ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «Приднестровский Государственный Университет им. Т.Г. Шевченко»

Физико-математический факультет

Кафедра математического анализа и приложений

УТВИРЖДАЮ
Зав кафедриникарабогника, доц., к.ф.-м.н.

Марковический Ворническу Г.И.
прогокол чили для 25 09 2021г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине

«МАТЕМАТИКА»

Направление: **6.44.03.01 Педагогическое образование**

Профиль: Физическая культура

Квалификация: **Бакалавриат**

Форма обучения **Очная**

2021 ГОД НАБОРА

Разработал: ст. преподаватель
________/Косюк Н.В.
« 20 » 29 2021г.

Паспорт фонда оценочных средств по учебной дисциплине

1. В результате изучения **МАТЕМАТИКИ** у обучающихся должны быть сформулированы следующие компетенции:

Категория	Код и	Код и наименование индикатора достижения
(группа)	наименование	универсальной компетенции
компетенций		
y	ниверсальные компете	нции и индикаторы их достижения
Системное и	УК-1 – способен	ИД- $1_{ m YK-1}$ — Знает: методы критического анали-
критическое	осуществлять по-	за; основные принципы критического анализа
мышление	иск, критический	ИД-2 _{УК-1} – Умеет: получать новые знания на
	анализ и синтез ин-	основе анализа, синтеза и др.; собирать данные
	формации, приме-	относящиеся к профессиональной области;
	нять системный	осуществлять поиск информации и решений на
	подход для решения	основе действий, эксперимента и опыта
	поставленных задач	ИД-3 _{УК-1} – Владеет: исследованием проблемы
		профессиональной деятельности с применени-
		ем анализа; синтеза и других методов интел-
		лектуальной деятельности; методами для ре-
		шения научных проблем и возникающих про-
		блемных профессиональных ситуаций

2. Программа оценивания контролируемой компетенции:

Текущая	Контролируемые модули,	Код	Наименование	
аттестация	разделы (темы) дисциплины	контролируемой	оценочного	
	и их наименование	компетенции	средства	
		(или ее части)		
1	Раздел 1. <i>Основы</i>	ОК-1	Комплект индив.	
	математического анализа		заданий	
2	Раздел 2. Элементы теории	OK-1	Комплект индив.	
	вероятностей и		заданий	
	математической статистики			
3	Контрольная работа по	ОК-1	Комплект	
	разделам 1 и 2		заданий	
Промежуточ	ная аттестация	Код	Наименование	
		контролируемой	оценочного	
		компетенции	средства **	
	Зачет	ОК-1	Вопросы к	
			зачету и задачи	

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «Приднестровский Государственный Университет им. Т.Г. Шевченко»

Физико-математический факультет

Кафедра математического анализа и приложений

I. Комплект индивидуальных заданий по дисциплине «МАТЕМАТИКА»

Раздел 1. Основы математического анализа

Индивидуальная работа 1.1. Элементы теории множеств Задание 1.1.1.

Записать множество A перечислением его элементов:

$$A = \{x \mid x^2 - x - 42 \le 0, x \in [-2;10], x \in \mathbb{Z}\}$$

Задание 1.1.2.

Дано множество $A = \{1, 3, 5, 7\}$. Найти булеан B(A)

Задание 1.1.3.

Дано универсальное множество $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\}$, а также множества $A = \{1, 2, 4, 6, 8\}$, $B = \{3, 4, 6\}$, $C = \{5, 7\}$. Найти: 1) $A \cup B$; 2) $A \cap B$; 3) $A \triangle B$; 4) $\overline{A} \cap C$; 5) $A \times C$.

Задание 1.1.4.

Даны множества $A = \begin{bmatrix} -2;7 \end{bmatrix}$ и $B = \begin{pmatrix} 3;9 \end{pmatrix}$. Найти и построить: 1) $A \cup B$; 2) $A \cap B$; 3) $A \setminus B$; 4) $A \times B$.

Задание 1.1.5.

Используя свойства мощности, решить задачу:

В спортивном классе каждый учащийся занимается хотя бы одним видом спорта (гандболом или волейболом), из них гандболом и волейболом занимаются 7 человек. Сколько учащихся в классе, если только гандболом занимается 9 человек, а только волейболом 11?

Индивидуальная работа 1.2. Функция, область определения функции. Обратная функция. Предел функции и непрерывность Задание 1.2.1.

Найдите область определения функции:

1)
$$y = 7x - 11$$

4)
$$y = 3x^2 - 4x + 1$$

2)
$$y = \frac{2x^2+5}{16-9x^2}$$

5)
$$y = \ln(11x + 15)$$

3)
$$y = \sqrt{-4x^2 + 3x + 1}$$

Задание 1.2.2.

Найдите функцию обратную данной. Укажите область определения обратной функции.

1)
$$y = 7x - 11$$

2)
$$y = \frac{2x-3}{4-3x}$$

3)
$$y = \frac{x^2 - 5}{4 - x^2}$$

4)
$$y = \sqrt{3x - 8}$$

Задание 1.2.3.

Найдите пределы функции

1)
$$\lim_{x \to x_0} \frac{3x^2 + 4x - 7}{4 - 5x + x^2}$$
 при a) $x_0 = 2$; 6) $x_0 = 1$; B) $x_0 = \infty$

2)
$$\lim_{x \to -4} \frac{\sqrt{5-4x}-5}{3-\sqrt{4-3x}}$$
; 3) $\lim_{x \to 0} \frac{8\sin^2 7x}{11xtg5x}$; 4) $\lim_{x \to \infty} \left(\frac{6x+5}{6x-7}\right)^{4x-3}$

Задание 1.2.4.

Найдите интервалы непрерывности функции. Построить график функции.

a)
$$y = \begin{cases} 5 + 2x, & x \le -2 \\ 3 - x^2, -2 < x \le 3 \\ -\frac{18}{x}, & x > 3 \end{cases}$$
 6) $y = \begin{cases} -3x + 1, & x \le -3 \\ \sqrt{3 + x}, & -3 < x \le 1 \\ \ln(x - 1), & x > 1 \end{cases}$

Индивидуальная работа 1.3. Производная, ее механический и геометрический смысл. Дифференцирование сложной функции. Применение производной.

Задание 1.3.1.

Найдите уравнение касательной и нормали к графику функции $y = \frac{3x^2}{x^2 - 1}$ в точке с абсциссой $x_0 = 2$.

Задание 1.3.2.

Точка движется по закону $x(t) = \frac{1}{3}x^3 + 2t^2 - t + 1$, где t – время в секундах, x – пройденный путь в метрах. 1) Определите скорость точки в момент времени 5c; 2) Найдите время в секундах, если скорость равна 4м/c.

Задание 1.3.3.

Найдите производные функций:

a)
$$y = x^{7} \sqrt[5]{x^{3}}$$
; 6) $y = 3^{x} \left(tgx - \frac{4}{x} \right)$; B) $y = x^{3} log_{5}x$; F) $y = \frac{\sqrt{x}}{sinx}$
3adanue 1.3.4.

Найдите промежутки монотонности функции и точки экстремума

a)
$$y = 3x^3 - 2x^2 - 5x + 1$$
; 6) $y = 8ln(x + 7) - 8x + 3$
3a) ahue 1.3.5.

Найдите значение функции в точке x_2 , зная ее значение в точке x_1 и значение производной в этой же точке

$$y = \sqrt{2x^2 + 8x + 1}, x_1 = 2, x_2 = 2,02$$

Задание 1.3.5.

Найдите наибольшее и наименьшее значения функции на отрезке $y = (x+1)(x-3)^2$ на [1;4]

Задание 1.3.5.

Найдите пределы функций, используя правило Лопиталя

a)
$$\lim_{x\to 0} \frac{\sin 2x - e^{5x} + 1}{x - \cos x + 1}$$
; 6) $\lim_{x\to 0} \frac{1 - \cos 4x}{xtg3x}$

Индивидуальная работа 1.4. *Интегральное исчисление Задание 1.4.1*.

Найдите неопределенные интегралы

a)
$$\int \frac{\sqrt{x} - \sqrt[3]{x^5} - 7}{3x^4} dx$$
; 6) $\int \frac{x^3 - 4x - 5}{x - 3} dx$; B) $\int x^2 \sin 2x dx$;
r) $\int \frac{\sqrt{x - 4} - 7}{x - 3} dx$

Задание 1.4.2.

Найдите определенные интегралы

a)
$$\int_{1}^{4} \frac{x dx}{\sqrt{2+4x}}$$
; 6) $\int_{1}^{4} \ln(3x-2) dx$

Задание 1.4.3.

Найдите площадь фигуры, ограниченной линиями $y = -x^2 - 4x + 5$ $y = x^2 + 2x - 3$. Сделать рисунок

Раздел 2. Элементы теории вероятностей и математической статистики

Индивидуальная работа 2.1. *Вероятность случайного события Задание 2.1.1*.

В фирме такси в данный момент свободно 20 машин: 10 черных, 2 желтых и 8 зеленых. По вызову выехала одна из машин, случайно оказавшаяся ближе всего к заказчику. Какова вероятность того, что к нему приедет зеленое такси?

Задание 2.1.2.

Два спортсмена участвуют в отборочных соревнованиях. Вероятность зачисления в сборную команду для первого спортсмена равна 0.8, для второго — 0.7. Какова вероятность того, что хотя бы один спортсмен попадут в сборную?

Задание 2.1.3.

В город ведут три дороги, каждая из которых охраняется блок — постом. Вероятность того, что отряд боевиков изберет первую дорогу, равна 0.2, вторую — 0.3, третью — 0.5. Известно также, что блок — пост №1 может быть прорван с вероятностью 0.5, блок — пост №2 — с вероятностью 0.33, блок — пост №3 — с вероятностью 0.125. Какова вероятность того, что боевики прорвались в город?

Задание 2.1.4.

На автобазе имеется 10 автомашин. Вероятность выхода на линию каждой из них равна 0.8. Какова вероятность того, что в ближайший день на линии будет ровно 8 автомашин?

Индивидуальная работа 2.2. *Статистическое распределение, его параметры*

Задание 2.2.1.

В целях изучения размера обуви X студентов некоторого факультета была проведена выборка: 39, 42, 37, 41, 43, 38, 38, 44, 45, 40, 37, 44, 43, 44, 38, 42, 45, 45, 37, 43. Требуется: а) составить распределение частот; б) построить полигон частот; в) найти \bar{x} , D, S, V, A, E, M, M, E; Γ) считая, что признак X распределен нормально, найти доверительный интервал, по-

крывающий неизвестное математическое ожидание a с надежностью y = 0.99.

Задание 2.2.2.

Для определения характеристик артериального давления (в мм ртутного столба), было обследовано 30 пациентов (взяты верхние значения): 157, 160, 133, 159, 179, 148, 143, 128, 138, 172, 164, 171, 158, 136, 169, 153, 142, 147, 134, 164, 167, 131, 152, 144, 176, 122, 149, 118, 129, 133. Требуется представить эти данные в виде интервального ряда распределения с шагом 5 и построить гистограмму относительных частот.

Задание 2.2.3.

Результаты измерения роста 100 студентов приведены в следующей таблице:

Рост (см)	154–	158–	162–	166–	170–	174–	178–	182–
	158	162	166	170	174	178	182	186
Число студентов	8	14	20	32	12	8	4	2

Требуется: а) построить гистограмму относительных частот; б) выбрав середины интервалов за значение роста, составить дискретную таблицу частот и найти \bar{x} , D, S, V, A, E, Mo, Me; в) считая, что признак X распределен нормально, найти доверительный интервал, покрывающий неизвестное математическое ожидание a с надежностью $\gamma = 0.997$.

Индивидуальная работа 2.3. *Проверка статистических гипотез* Из большой партии изделий берут на пробу n=4 изделия. Известно, что доля дефектных изделий во всей партии равна p=0,23. Провели N=300 серий испытаний и получили эмпирическое распределение:

X_i	0	1	2	3	4
n_{i}	97	114	71	16	2

При уровне значимости $\alpha = 0.05$ проверить нулевую гипотезу о биномиальном распределении. На одной координатной плоскости построить полигоны частот для эмпирического и теоретического распределений. Сравнить.

Индивидуальная работа 2.4. Элементы теории корреляции

Экономист, изучая зависимость производительности труда Y (т/ч) от уровня механизации работ X (%), обследовал 10 однотипных предприятий и получил следующие данные (табл.).

	-					/				
x_i	53	31	77	60	37	69	47	54	66	40
y_i	37	25	49	40	29	45	33	38	42	30

Полагая, что между признаками X и Y имеет место линейная корреляционная связь, определите выборочное уравнение линейной регрессии Y на X и выборочный коэффициент линейной корреляции. Постройте диаграмму рассеяния и линию регрессии. Сделайте вывод о направлении и тесноте связи между признаками X и Y. Значимы ли параметры регрессии и выборочный коэффициент корреляции при уровне значимости α =0,05?

Критерии оценки:

Каждое задание индивидуальных работ 1.1. и 2.2. оценивается в 2 балла; индивидуальных работ 1.2., 1.3.,1.4, 2.1.— в 3 балла; индивидуальной работы 2.3.— в 5 баллов. Максимальное количество баллов выставляется за верно решенное и оформленное задание. Максимальное количество баллов за все индивидуальные работы составляет 52 балла.

II. Контрольная работа по дисциплине «Математика»

Задание 1.

Найдите область определения функции: $y = \sqrt{-4x^2 + 3x + 1}$

Задание 2.

Найдите предел функции $\lim_{x\to -4} \frac{\sqrt{5-4x}-5}{3-\sqrt{4-3x}}$

Задание 3.

Найдите производную функций: $y = 3^x \left(tgx - \frac{4}{x}\right)$

Задание 4.

Найдите предел функции, используя правило Лопиталя

$$\lim_{x\to 0} \frac{\sin 2x - e^{5x} + 1}{x - \cos x + 1}$$

Задание 5.

Найдите неопределенный интеграл $\int \frac{\sqrt{x} - \sqrt[3]{x^5} - 7}{3x^4} dx$

Задание 6.

Найдите определенный интеграл $\int_{1}^{5} \frac{x dx}{\sqrt{1+3x}}$

Задание 6.

Вероятность своевременного выполнения задания двумя независимо работающими бригадами соответственно равны 0,6 и 0,7. Какова вероятность своевременного выполнения задания хотя бы одной бригадой?

Задание 7.

Дано распределение признака Х:

X_i	1	2	3	4
n_{i}	2	3	3	2

Требуется: a) построить полигон частот; б) найти \bar{x}, Mo, Me .

Задание 8.

Построить гистограмму частот, если признак X дан в виде распределения частичных интервалов:

Частичный интер-	Частота интервала
вал	_
2–4	1
4–6	4
6–8	10
8–10	7

Критерии оценки:

Каждое задание контрольной работы оценивается в 1,5 балла. Максимальное число баллов ставиться, если задание решено и оформлено верно.

- Оценка «отлично» выставляется студенту, если он набрал 10–12 баллов
- Оценка «хорошо» 8–9
- Оценка «удовлетворительно» 6–7
- Оценка «неудовлетворительно» 0–5

III. Вопросы для подготовки к зачету по дисциплине «Математика»

- 1. Понятие множества. Элементы множества.
- 2. Способы задания множеств: перечислением элементов, наложением условий, графически с помощью диаграмм Эйлера.
- 3. Операции над множествами (объединение, пересечение, разность множеств, симметрическая разность, дополнение, декартово произведение).
- 4. Мощность множества, его свойства. Числовая ось. Связь между точками числовой оси и множеством действительных чисел. Понятие интервала, его разновидности.
- 5. Понятие функции, область определения, область значении. Способы задания функции. График функции.
- 6. Предел функции. Бесконечно большие и бесконечно малые величины, их связь.
- 7. Условия существования предела функции. Свойства предела функции.
- 8. Раскрытие неопределенностей $\binom{0}{0}$ и $\binom{\infty}{\infty}$.
- 9. Замечательные предел. Следствия.
- 10. Непрерывность функции. Точки разрыва функции. Классификация точек разрыва.
- 11. Производная, правосторонняя и левосторонняя производные функции. Дифференцируемость функции.
- 12. Геометрический и механический смысл производной. Уравнения касательной и нормали.
- 13. Правила дифференцирования. Таблица производных.
- 14. Приращение функции. Дифференциал функции, его свойства. Применение дифференциала функции к приближенным вычислениям.
- 15. Дифференцирование сложной функции.
- 16. Возрастание и убывание функции в точке. Условия возрастания и убывания функции. Локальный экстремум. Условия существования экстремума функции
- 17. Наибольшее и наименьшее значения функции.
- 18. Правило Лопиталя.
- 19. Первообразная функция. Теорема о первообразной функции.
- 20. Неопределенный интеграл, его свойства. Таблица интегралов.
- 21. Метод замены переменной в неопределенном интеграле.
- 22. Интегрирование по частям в неопределенном интеграле.

- 23. Определенный интеграл, его свойства и смысл. Формула Ньютона-Лейбница.
- 24. Замена переменной в определенном интеграле.
- 25. Интегрирование по частям в определенном интеграле.
- 26. Пространство элементарных событий.
- 27. Понятие события на дискретном пространстве.
- 28. Вероятность дискретного пространства, его свойства.
- 29. Классическое определение вероятности.
- 30. Совместные и несовместные события, вероятность их объединения.
- 31. Противоположные события, их вероятности.
- 32. Полная группа событий, их вероятности.
- 33. Условная вероятность. Зависимые и независимые события.
- 34. Формула полной вероятности. Формула Байеса.
- 35. Понятие независимых и повторных испытаний. Формула Бернулли.
- 36. Понятие случайной величины. Ряд распределения случайной величины, его свойства.
- 37. Функция распределения, ее свойства.
- 38. Математическое ожидание, его свойства.
- 39. Дисперсия и среднеквадратическое отклонение, их свойства.
- 40. Коэффициент асимметрии и эксцесс.
- 41. Вариационный ряд. Понятие статистического распределения.
- 42. Полигон и гистограмма частот.
- 43. Понятие оценки, ее свойства.
- 44. Точечные оценки параметров распределения: \bar{x}_e , D_e , S^2 , σ_e , S, коэффициент вариации, коэффициент асимметрии, эксцесс, мода и медиана.
- 45. Уравнение прямой линии регрессии У на Х.
- 46. Коэффициент корреляции, его свойства и смысл.
- 47. Статистическая гипотеза. Статистический критерий.
- 48. Критическая область. Область принятия гипотезы.
- 49. Критические точки. Виды критических областей.
- 50. Проверка гипотезы о распределении генеральной совокупности. Критерий согласия Пирсона.

IV. Задания к зачету по дисциплине «Математика» формируются из заданий индивидуальных работ

Критерии оценки:

Зачетная работа содержит пять теоретических вопроса и три практических задания. Она оценивается в 36 баллов. Максимальное количество баллов ставится студенту, если все вопросы и задания им оформлены верно.

Каждый теоретический вопрос состоит либо из одного определения, одной формулы или какого-то одного условия. Вопрос оценивается в 4 балла, а практическое задание в 5 баллов.

Студент получает оценку «зачтено» если набирает 65-100 баллов и «не зачтено», если 0-64 балла. Эта оценка получается суммированием баллов всех индивидуальных работ, контрольной работы и зачетной работы.

Замечание. Если студент набирает за индивидуальные и контрольную работы от 44 до 64 баллов, то он может в зачетной работе отвечать только на теоретические вопросы (с учетом, если он набирает 65 баллов и более)