

ЕСТЕСТВЕННО-ГЕОГРАФИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА ФИЗИОЛОГИИ И САНОКРЕАТОЛОГИИ

«Утверждаю»

Заведующий кафедрой

физиологии и санокреатологи

д.б.н., проф.///____________________В.А.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине

«ФИЗИОЛОГИЯ РЕГУЛЯТОРНЫХ СИСТЕМ»

Направление подготовки: 44.03.01 «ПЕДАГОГИЧЕСКОЕ ОБРАЗОВАНИЕ»

Профиль подготовки «RNOЛОГОНЗ»

Квалификация (степень) выпускника

Бакалавр

Форма обучения

заочная

Разработал:

к.б.н., доцент

Паспорт фонда оценочных средств по учебной дисциплине Б1.В.ДВ.8 «Физиология регуляторных систем»

1. В результате изучения дисциплины «Физиология регуляторных систем»» студент по направлению подготовки 44.03.01 — «Биология»

Должен знать:

- -закономерности функционирования ЦНС
- понимание роли отдельных отделов мозга в регуляции функций организма
- закономерности функционирования эндокринных желез и их роли в поддержании гомеостаза
- строение, физиологическую роль и биосинтез тиреоидных гормонов, регуляцию функции щитовидной железы, обмен йода в организме
- строение, физиологическую роль и биосинтез гормонов коры и мозгового вещества надпочечников, регуляцию функций надпочечников
 - физиологическую роль и биосинтез гормонов гипофиза, половых желез
 - основные биофизиологические эффекты инсулина
 - нейрогуморальные механизмы регуляции вегетативных функций

Должен уметь:

- правильно интерпретировать принципы и механизмы работы мозга

Должен владеть навыками:

- знаниями о взаимодействии местных, гормональных и нервных механизмов регуляции физиологических функций
 - основными методами гормонального анализа
 - интерпретацией лабораторных и инструментальных методов исследования

Программа оценивания контролируемой компетенции:

Текущая аттестация	Контролируемые модули, разделы (темы) дисциплины и их наименование	Код контролируемой компетенции (или ее части)	Наименование оценочного средства
1	Раздел 1.Физиология нервной регуляторной системы	ОК-6, ОК-7, ОПК-1, ОПК-2, ОПК-3, ОПК-4, ПК-1, ПК-4, ПК-5, ПК-6, ПК-7, ПК-9, ПК-10, ПК- 11, ПК-12	Вопросы для промежугочной и итоговой аттестации; Дискуссия
2	Раздел 2. Физиология гуморальной регуляторной системы	ОК-6, ОК-7, ОПК-1, ОПК-2, ОПК-3, ОПК-4, ПК-1, ПК-4, ПК-5, ПК-6, ПК-7, ПК-9, ПК-10, ПК- 11, ПК-12	Вопросы для промежуточной и итоговой аттестации; Дискуссия
3	Раздел 3. Механизмы регуляции соматических и вегетативных функций	ОК-6, ОК-7, ОПК-1, ОПК-2, ОПК-3, ОПК-4, ПК-1, ПК-4, ПК-5, ПК-6, ПК-7, ПК-9, ПК-10, ПК-	Вопросы для промежуточной и и итоговой аттестации; Дискуссия; Перечень тем рефератов (докладов, сообщений)

		11, ПК-12	
Промежуто чная аттестация	Контролируемые модули, разделы (темы) дисциплины и их наименование	Код контролируемой компетенции (или ее части)	Наименование оценочного средства
1	Раздел 1. Физиология нервной регуляторной системы	ОК-6, ОК-7, ОПК-1, ОПК-2, ОПК-3, ОПК-4, ПК-1, ПК-4, ПК-5, ПК-6, ПК-7, ПК-9, ПК-10, ПК- 11, ПК-12	Вопросы для промежугочной и итоговой аттестации; Тесты; Перечень тем рефератов (докладов, сообщений)
2	Раздел 2. Физиология гуморальной регуляторной системы	ОК-6, ОК-7, ОПК-1, ОПК-2, ОПК-3, ОПК-4, ПК-1, ПК-4, ПК-5, ПК-6, ПК-7, ПК-9, ПК-10, ПК- 11, ПК-12	Вопросы для промежуточной и итоговой аттестации; Тесты; Перечень тем рефератов (докладов, сообщений)
3	Раздел 3.Механизмы регуляции соматических и вегетативных функций	ОК-6, ОК-7, ОПК-1, ОПК-2, ОПК-3, ОПК-4, ПК-1, ПК-4, ПК-5, ПК-6, ПК-7, ПК-9, ПК-10, ПК- 11, ПК-12	Вопросы для промежугочной и итоговой аттестации; Тесты; Перечень тем рефератов (докладов, сообщений)

Перечень оценочных средств

№ п/п	Наименование оценочного средства	Краткая характеристика оценочного средства	Представление оценочного средства в фонде
1	Реферат	Продукт самостоятельной работы студента, представляющий собой краткое изложение в письменном виде полученных результатов теоретического анализа определенной научной (учебно-исследовательской) темы, где автор раскрывает суть исследуемой проблемы, приводит различные точки зрения, а также собственные взгляды на нее.	Темы рефератов
2	Доклад, сообщение	Продукт самостоятельной работы студента, представляющий собой публичное выступление по представлению полученных результатов решения определенной учебнопрактической, учебно-исследовательской или научной темы	Темы докладов, сообщений
3	Тест	Система стандартизированных заданий,	Фонд тестовых

позволяющая автоматизировать процедуру за	аданий
измерения уровня знаний и умений	
обучающегося.	

ЕСТЕСТВЕННО-ГЕОГРАФИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ФИЗИОЛОГИИ И САНОКРЕАТОЛОГИИ

Вопросы для итоговой (зачет) аттестации по дисциплине «Физиология регуляторных систем»

- 1. Уровни организации живого. Единство структуры и функции. Объединение организма в единое целое регуляторными системами.
- 2. Раздражение. Возбуждение. Возбудимые клетки. Возбудимые ткани.
- 3. Ионный механизм формирования мембранного потенциала покоя.
- 4. Ионный механизм генерирования потенциал действия. Порог раздражения. Закон «всё или ничего».
- 5. Распространение потенциала действия. Типы нервных волокон. Аксонный транспорт.
- 6. Механизм синаптической передачи. Отличия работы возбуждающего и тормозного (ингибиторного) синапсов. Суммация постсинаптических потенциалов.
- 7. Нейротрансмиттерные вещества и нейротрансмиттерные системы центральной регуляции.
- 8. Механизм регуляторного действия рефлекторной дуги (моносинаптической) (схема).
- 9. Ионный механизм постсинаптического торможения (ингибирования). Генерирование тормозного (ингибиторного) постсинаптического потенциала.
- 10. Принципы регуляции функций живого организма.
- 11. Механизм регуляторного действия рефлекторной дуги (полисинаптической) (схема).
- 12. Регуляторная роль вазопрессина, схема его биосинтеза и транспортировки в задний гипофиз.
- 13. Нейропластичность уникальное свойство образований нервной системы регуляции, её базовый механизм реализации на уровне клеточных структур (на микроуровне).
- 14. Главные функции нервной и гуморальной систем регуляции.
- 15. Принципы взаимодействия нервной регуляторной системы с эндокринной и иммунной.
- 16. Регуляторный механизм действия положительной и отрицательной обратной связи (feedback).
- 17. Регуляторная роль гипоталамо-гипофизарной системы в обеспечении поддержания гомеостаза при действии возмущающих стрессогенных факторов.
- 18. Исследование регуляторной роли белков нервной ткани и ткани эндокринных желез путем иммуногистохимического анализ.
- 19. Регуляторная роль адренокортикотропного гормона (АКТГ) для мобилизации резервов организма при действии на него экстремальных факторов.
- 20. Функции желез внутренней секреции в обеспечении динамического постоянства внутренней среды, полового развития
- 21. Роль гипоталамических рилизинг-факторов (либеринов).

- 22. Функциональная регуляторная роль тропных гормонов гипофиза.
- 23. Регуляторная роль соматотропина (гормона роста) и пролактина для физического развития организма и иммунной системы.
- 24. Функциональная регуляторная роль гипоталамо-гипофизарной системы. Сопряжение нервной и гуморальной систем регуляции. Механизм нейросекреции и транспорта гормонального фактора.
- 25. Регуляторная роль фолликулостимулирующего гормона передней доли гипофиза.
- 26. Регуляторная роль гипоталамических ингибитинг-факторов (статинов).
- 27. Функциональная роль эффекторных гормонов гипофиза.
- 28. Структуры головного мозга в стереотаксическом атласе, система координат, определение координат ядер.
- 29. Регуляторная роль меланоцитстимулирующего гормона (МСГ) промежугочной доли гипофиза.
- 30. Гетерогенность и гетероморфность головного мозга, методические подходы в исследовании сложно переплетенных нейронных сетей.
- 31. Техника приготовления блоков и срезов ткани нервной и эндокринной систем регуляции.
- 32. Принципы работы ротационным микротом с тканью, залитой в парафин, а также с замороженной тканью в криостате.
- 33. Принцип электрофизиологического исследования мембранных ионных механизмов методом patchclamp (пэтчклэмп).
- 34. Исследование регуляторной роли белков с применением метода Westernblotting (вестерн блоттинг).

Составитель: Бачу А.Я.

ЕСТЕСТВЕННО-ГЕОГРАФИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ФИЗИОЛОГИИ И САНОКРЕАТОЛОГИИ

Примерный перечень тем рефератов/докладов/сообщений по дисциплине «Физиология регуляторных систем»

- 1. Открытие торможения в ЦНС И.М. Сеченовым.
- 2. Мембранная и химическая теория интегративной деятельности нейрона.
- 3. Двигательные области коры больших полушарий. Эфферентные связи двигательных областей коры.
 - 4. Участие ретикулярной формации в регуляции сна и бодрствования.
 - 5. Роль гипоталамуса в регуляции вегетативных функций организма.
 - 6. Проблема локализации функций в коре больших полушарий
 - 7. Межполушарная асимметрия.
 - 8. Стволовые механизмы регуляции позы тела и мышечного тонуса.
- 9. Роль гипоталамо-гипофизарной регуляторной системы в реализации стрессовой реакции организма.
 - 10. Нейрогуморальная регуляция репродуктивной функции человека.
 - 11. Гормональный профиль женщины в течение полового цикла, методики его определения.
 - 12. Проблема применения анаболических средств в физической культуре и спорте.

Составитель: ______ Бачу д

ЕСТЕСТВЕННО-ГЕОГРАФИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ФИЗИОЛОГИИ И САНОКРЕАТОЛОГИИ

Тест для промежуточной аттестации по дисциплине «Физиология регуляторных систем»

1 Мембранный потенциал покоя		бранный потенциал покоя		
	a	электронейтрален		
	б	электроотрицателен		
	В	электроположителен		
2	Для о	формирования потенциала покоя главное значение имеют ионы		
	a	K+		
	б	Ca2+		
	В	Cl-		
	Γ	Na+		
3	Энер	огозависимое поддержание потенциала покоя обеспечивается		
	a	открыванием Na+-каналов		
	б	воротным механизмом ионных насосов		
	В	работой Na+,K+-ионных насосов		
	Γ	открыванием Са2+-каналов		
4	Гене	рирование потенциала действия обусловлено		
	a	утечкой ионов К+ из внугриклеточной среды		
	б	запуском Na+,К+-ионных насосов		
	В	притоком ионов СІ- во внутриклкточную среду		
	Γ	лавинообразным притоком ионов Na+ во внутриклеточную среду		
5	Генерирование потенциала действия вызвано			
	a	потенциацией		
	б	поляризацией		
	В	деполяризацией		
	Γ	гиперполяризацией		
6	B coo	стоянии рефрактерности нейрон		
	a	сверхчувствителен к раздражителям		
	б	готов к возбуждению		
	В	перевозбужден		
	Γ	не отвечает возбуждением на раздражитель		
7	След	овой потенциал		
	a	примерно такой же по длительности, как пик потенциала действия		
	б	вообще никак не связан с потенциалом действия		
	В	гораздо короче, чем пик потенциала действия		
	Γ	гораздо длительней, чем пик потенциала действия		
8	Нако	Накопление ионов К+ в межклеточном пространстве		

б никак не сказывается на поляризованность мембраны нейрона приводит к гиперполяризации мембраны нейрона 9 При синаптической передаче в нервном окончании в булавовидное расширение устремляются ионы С1ионы Са2+ б ионы Na+ В ионы К+ 10 Один квант нейротрансмиттера содержится в одной везикуле б в постсинаптической мембране В в синаптической щели во всей зоне взаимодействия во всем синаптическом булавовидном расширении Γ 11 Возбуждающий постсинаптический потенциал обусловлен гиперполяризацией постсинаптической мембраны a б деполяризацией постсинаптической мембраны В реполяризацией постсинаптической мембраны поляризацией постсинаптической мембраны 12 Тормозной (ингибиторный) постсинаптический потенциал обусловлен гиперполяризацией постсинаптической мембраны a б деполяризацией постсинаптической мембраны В поляризацией постсинаптической мембраны реполяризацией пресинаптической мембраны 13 Везикулы в большом количестве содержатся в теле нейрона a б нервной терминали В области аксонного холмика дендритах Нейротрансмиттер возбуждающего действия вызывает 14 a деполяризацию на постсинаптической мембране б гиперполяризацию на постсинаптической мембране В поляризацию пресинаптической мембраны потенциацию постсинаптической мембраны Нейротрансмиттер тормозного (ингибиторного) действия вызывает 15 гиперполяризацию на постсинаптической мембране a б поляризацию на пресинаптической мембране реполяризацию на постсинаптической мембране В деполяризацию на постсинаптической мембране Γ 16 Миметические вещества (миметики) блокируют рецепторы к определенномунейротрансмиттеру a б способствуют усилению выброса нейротрансмиттера не влияют на рецепторы В взаимодействуя с определенными рецепторами, оказывают действие аналогичное тому, которое производит сам нейротрансмиттер 17 Литические вещества (литики) a стимулируют высвобождение содержимого везикул б не взаимодействуют с рецепторами взаимодействуют соответствующими В c рецепторами, действуя аналогично нейротрансмиттеру реагируют соответствующими рецепторами Г конкурентно

приводит к деполяризации мембраны нейрона

a

		неиротрансмиттером, вызывая олокирование передачи
18	Преси	наптическое торможение
	•	способствует уменьшению выброса нейротрансмиттера
		изменяет свойства постсинаптической мембраны
		не изменяет степень выброса нейротрансмиттера
		увеличивает проницаемость пресинаптической мембраны для ионов Cl-
19	Клетк	а Реншоу
	a	оказывает тормозное (ингибиторное) действие
	б	стимулирует синтез физиологически активного вещества
	В	стимулирует синаптическую передачу в нервно-мышечном синапсе
	Γ	оказывает возбуждающее действие
20	В рец	ептивном сегменте рефлекторной дуги
	a	производится синаптическая передача сигнала от чувствительного к
		вставочному нейрону
	б	осуществляется передача нервного импульса по афферентному волокну
	В	производится синаптическая передача сигнала от чувствительного к
		двигательному нейрону
	Γ	происходит восприятие сигнала
21	В кон,	дуктивном сегменте рефлекторной дуги
	a	производится синаптическая передача сигнала от двигательного нейрона
		на мышцу
	б	осуществляется восприятие сигнала
	В	осуществляется распространение нервного импульса по нервному
		волокну
	Γ	производится синаптическая передача сигнала от вставочного к
		двигательному нейрону
22	В траг	нсмиссивном сегменте рефлекторной дуги
	a	осуществляется синаптическая передача сигнала
	б	происходит распространение сигнала по нервному волокну
	В	локализуется тело чувствительного нейрона
	Γ	происходит восприятие сигнала
23	В тро	фическом сегменте рефлекторной дуги
	a	локализуется тело нейрона
	б	производится передача сигнала от двигательного нейрона на мышцу
	В	осуществляется распространение сигнала по нервному волокну
	Γ	происходит восприятие сигнала
24	Мемб	рана в перехватах Ранвье характеризуется
	a	высокой концентрацией Clканалов
	б	высокой концентрацией Na+-каналов
	В	низкой концентрацией Na+-каналов
	Γ	высокой концентрацией К+-каналов
25	Серий	иный нейронный процессинг производится
	a	нейронами в направлении от более низких к более высоким уровням
	б	нейронами, популяциями нейронов, организованных как звенья одной
		цепи
	В	нейронами различных цепей, называемых каналами
•	Γ	неорганизованной популяцией нейронов
26	Парал	лельный нейронный процессинг осуществляется
	a	неорганизованной популяцией нейронов
	б	нейронами, организованными как звенья одной цепи
	В	нейронами в направлении от более низким к более высоким уровням
	Γ	нейронами различных цепей, называемых каналами

27	Иера	рхический нейронный процессинг выполняется
	a	неорганизованной популяцией нейронов
	б	нейронами, организованными как звенья одной цепи
	В	нейронами в направлении от более низких в более высоким уровням
	Γ	нейронами различных цепей, называемых каналами
28	В неј	рвных окончаниях одного и того же нейрона выделяется
	a	два или три нейротрансмиттера
	б	определенное сочетание нейротрансмиттеров
	В	только один квант нейротрансмиттера
	Γ	только один нейротрансмиттер
29	Поср	едством соматической рефлекторной дуги регулируется
	a	сократительная активность произвольной (поперечнополосатой) мускулатуры
	б	секреторная активность железистых клеток
	В	сократительная активность непроизвольной (гладкой) мускулатуры
	Γ	функции высших отделов ЦНС
30	Поср	едством висцеральной рефлекторной дуги регулируется
	a	функции высших отделов ЦНС
	б	сократительная активность произвольной (поперечнополосатой)
		мускулатуры
	В	функции клеток коры мозжечка
0.1	Г	сократительная активность непроизвольной (гладкой) мускулатуры
31	_	оом веществе преимущественно локализуются
	a	тела нейронов
	б	эпендимоциты
	В	синапсы
22	Г	нервные отростки
32		пом веществе преимущественно локализуются
	а б	нервные волокна
		тела нейронов
	В	эпендимоциты
33	и Инсп	олигодендроциты
33		пираторные и экспираторные нейроны дыхательного центра в ходе
	дыла a	тельного акта активизируются одновременно
	б	попеременно
	В	каскадом
	Г	очагово
34	_	дренергический центр локализуется в
<i>3</i> i	a	переднем гипоталамусе
	б	голубом пятне
	В	неспецифическом таламусе
	Г	слое САЗ гиппокампа
35	Cepo	тонинергический центр локализуется в
33	a	дорсальном ядре шва
	б	миндалине
	В	заднем гипоталамусе
	Γ	таламусе
36	Пере	дача стимулов по болевым и температурным путям осуществляется по
	a	А-гамма-волокнам
	б	быстропроводящим (А-альфа) волокнам
		• • · · · · · · · · · · · · · · · · · ·

медленнопроводящим (А-дельта и С) волокнам Г 37 Тела нейронов 3-го порядка болевого и температурного трактов локализуются в крестцовом отделе спинного мозга б ядрах таламуса ядрах гипоталамуса В Γ грудном отделе спинного мозга 38 Лазающие волокна проецируются на клетки-зерна б клетки Реншоу В клетки Пуркинье клетки Гольджи Γ 39 Мишстые волокна проецируются на a клетки Пуркинье б клетки-зерна клетки Реншоу В корзинчатые клетки Γ 40 По аксонам клеток Пуркинье осуществляется возбуждающая эфферентация из коры мозжечка a б тормозная (ингибиторная) эфферентация из среднего мозга тормозная (ингибиторная) эфферентация из коры мозжечка В возбуждающая эфферентация из продолговатого мозга Γ 41 От клеток-зерен коры мозжечка проецируются возбуждающие эфференты к вестибулярным ядрам a б аксоны, достигающие ядра мозжечка В параллельные волокна, достигающие молекулярный слой коры мозжечка тормозные (ингибиторные) эфференты к вестибулярным ядрам Γ 42 Нейроны супрахиазматического ядра гипоталамуса участвуют в регуляции a биоритмики активности и покоя в зависимости от смены дня и ночи б потребления пищи, усиливает проявление аппетита теплопродукции в организме В водно-солевого обмена в организме 43 Аксоны нейронов супраоптического и паравентрикулярного ядер гипоталамуса проецируются в a аденогипофиз (передний) б вестибулярные ядра промежуточную долю гипофиза В Γ нейрогипофиз (задний) 44 В нейрогипофиз (задний) по аксонам нейросекреторных клеток доставляются a соматотропин и тиреотропин б окситоцин и вазопрессин дофамин и норадреналин В серотонин и кортикотропин Г теплопродукция 45 Терморегуляция, частности. В предотвращения ДЛЯ переохлаждения обеспечивается активностью нейронов залнего гипоталамуса a б переднего гипоталамуса В хвостатого ядра покрышки 46 Терморегуляция, в частности, теплопотеря для предотвращения перегрева обеспечивается активностью нейронов ретикулярной формации среднего мозга a

В

А-бета-волокнам

б

заднего гипоталамуса неспецифических ядер таламуса переднего гипоталамуса В

Γ

Составитель: _

Бачу А.Я.