Государственное образовательное учреждение «Приднестровский государственный университет им. Т.Г. Шевченко»

Инженерно-технический институт

Инженерно-технический факультет

Кафедра автоматизированных технологий и промышленных комплексов

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для промежуточной аттестации

по дисциплине

Б1.В.ОД.8 «АВТОМАТИЗАЦИЯ ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ»

Направление подготовки:	15.03.02 – «Технологические машины и оборудование»
Профиль подготовки:	Машины и аппараты пищевой промышленности
Квалификация (степень) выпускника:	бакалавр
Форма обучения:	очная
Год набора:	2017 г.

ОДОБРЕН				
Кафедрой авто	оматизи	рованні	ых тех	нологий
промышленны	іх комп	лексов		
Протокол № _	. //		08	20 <u>20</u> Γ.
Зав. кафедрой	АТПК,			* * * * *
доцент	revis	B.l	Г.Звон	кий
4				
1	1 .			er in a second

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Разработан в соответствии с учетом Федерального Государственного образовательного стандарта высшего образования по направлению подготовки 15.03.02 «Технологические машины и оборудование», утвержденного приказом Министерства образования и науки Российской Федерации № 1170 от 20.10.2015 г.

Фонд оценочных средств рассмотрен методической комиссией инженерно-технического института протокол № $_{\perp}$ от « $_{\perp}$ 5» $_{\parallel}$ 20 $_{\perp}$ 6., и признан соответствующим требованиям Федерального Государственного образовательного стандарта и учебного плана по направлению 15.03.02 «Технологические машины и оборудование».

Председатель МК ИТИ _______ Е.И. Андрианова

Авторы/составители ФОС по дисциплине:

К.т.н., доцент *М.*Му И.В.Яковец

«31» 08 2020r.

СОДЕРЖАНИЕ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ (ФОС)	4
1.1 Область применения	4
1.2 Цели и задачи ФОС	4
1.3 Контролируемые компетенции	4
2. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ – ЗНАНИЯ, УМЕНИЯ,	
НАВЫКИ (ЗУН)	4
2.1 Промежуточная аттестация по дисциплине	8
2.2 Перечень оценочных средств	8
2.3 Расшифровка компетенции через планируемые результаты обучения	9
2.4 Этапы формирования компетенций	9
2.5 Общая шкала оценки образовательных достижений согласно	
кредитно-модульной системе 3. ПЕРЕЧЕНЬ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ (КОС)	10
	1 1
И ТИПОВЫЕ ЗАДАНИЯ	11
3.1 Состав контрольных точек по дисциплине (модулю)	11
3.2 Типовые задания и методика выставления баллов по каждому виду	4.4
KOC KT1	12
3.2.1. Практическая работа ПР1. Перечень заданий и методика выставления баллов	12
3.2.2. Практическая работа ПР2. Перечень заданий и методика	
выставления баллов	13
3.2.3. Лабораторная работа 1. Перечень заданий и методика выставления баллов	15
3.2.4 Контрольная работа К1. Перечень заданий и методика	1.
выставления баллов	16
3.3 Типовые задания и методика выставления баллов по каждому	
виду КОС КТ2	17
3.3.1. Лабораторная работа 2. Перечень заданий и методика выставления баллов	17
3.3.2. Практическая работа ПР3. Перечень заданий и методика	
выставления баллов	18
3.3.3. Практическая работа ПР4. Перечень заданий и методика	1.0
выставления баллов 3.3.4. Лабораторная работа 3. Перечень заданий и методика	19
3.3.4. Лаоораторная раоота 3. Перечень задании и методика выставления баллов	21
3.3.5. Лабораторная работа 4. Перечень заданий и методика	
выставления баллов	22
3.3.6. Контрольная работа К2. Перечень заданий и методика	
выставления баллов	23
3.4. Вопросы к зачёту	28
ПЕРЕЧЕНЬ ИЗМЕНЕНИЙ	30

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

1.1 Область применения

Фонд оценочных средств (ФОС) является неотъемлемой частью учебно-методического комплекса учебной дисциплины «Автоматизация производственных процессов» и предназначен для контроля и оценки образовательных достижений обучающихся, освоивших программу данной дисциплины.

1.2. Цели и задачи ФОС

Целью ФОС является установление соответствия уровня подготовки обучающихся требованиям ФГОС ВО по направлениям 15.03.02 «Технологические машины и оборудование».

Для достижения поставленной цели ФОС по дисциплине дисциплины «Автоматизация производственных процессов» решает следующие задачи:

- контроль и управление процессом приобретения обучающимися знаний, умений и навыков, предусмотренных в рамках данного курса;
- контроль и оценка степени освоения общекультурных, общепрофессиональных и профессиональных компетенций, предусмотренных в рамках данного курса;
- обеспечение соответствия результатов обучения задачам будущей профессиональной деятельности через совершенствование традиционных и внедрение инновационных методов обучения в образовательный процесс в рамках данного курса.

1.3. Контролируемые компетенции

ООП по направлениям подготовки 15.03.02 «Технологические машины и оборудование» и рабочая программа дисциплины «Автоматизация производственных процессов» по профилю подготовки «Машины и аппараты пищевой промышленности» и предусматривают формирование следующих общекультурных компетенций, общепрофессиональных и профессиональных компетенций:

Таблица 1.3.1 – Формулировка компетенции для направления 15.03.02 «Технологические машины и оборудование»

Код компетенции	Формулировка компетенции
ПК-12	способностью участвовать в работах по доводке и освоению технологических процессов в ходе подготовки производства новой продукции, проверять качество монтажа и наладки при испытаниях и сдаче в эксплуатацию новых образцов изделий, узлов и деталей выпускаемой продукции
ПК-15	умением выбирать основные и вспомогательные материалы, способы реализации технологических процессов, применять прогрессивные методы эксплуатации технологического оборудования при изготовлении технологических машин

2. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Поскольку перечисленные компетенции носят интегральный характер, для разработки оценочных средств целесообразно выделить планируемые результаты обучения — знания, умения и навыки, характеризующие этапы формирования компетенций и обеспечивающие достижение планируемых результатов освоения образовательной программы.

В результате освоения дисциплины «Автоматизация производственных процессов» и согласно ООП по направлению 15.03.02 «Технологические машины и оборудование», а также рабочей программе по данной дисциплине студенты должны:

Знать (знания обозначаются кодами – 3.1, 3.2 и т.д.):

Код знания	Результаты обучения	ия Показатели оценки результатов		
1	2	3		
3.1	_	производственных процессов, технологического и вспомогательного оборудования, технических средств, систем и комплексов;		
3.2	<u>-</u>	 знает технические средства автоматизации основных и вспомогательных технологических и производственных процессов; знает назначение, основные функции, возможности практического применения, автоматизированных и автоматических технологического и вспомогательного оборудования, технологических средств, систем и комплексов; знает основные требования к автоматизированным и автоматиче- 		
3.3		 знает технические средства автоматизации технологических процессов, технологического и вспомогательного оборудования, технологических средств, систем и комплексов; знает требования к автоматизированным и автоматическим технологическому и вспомогательному оборудованию, технологическим средствам, системам и комплексам; знает группы оборудования, средства оснащения автоматизированных и автоматических производственных процессов; знает назначение, основные функции, особенности работы, возможности практического применения автоматизированных и автоматических технологического и вспомогательного оборудования, технологических средств, систем и комплексов; знает устройство, принцип действия и основные характеристики современных средств автоматизации и управления технологическим и вспомогательным оборудованием, технологическими средствами, системами и комплексами; знает основные характеристики и параметры технологического и вспомогательного оборудования, технологических средств, систем и комплексов, средств оснащения и производственных процессов; 		

1	2	3		
	особенности и по-	- знает группы оборудования, средства оснащения для разработки авто-		
	рядок проектирова- матизированных и автоматических технологического и вспом			
	ния производствен-	оборудования, технологических средств, систем, комплексов и произ		
	ных процессов для	ственных процессов;		
		- знает основные характеристики и параметры технологического и вспо-		
	l •	могательного оборудования, технологических средств, систем и комплек-		
	го, гибкого произ-	сов, средств оснащения и производственных процессов;		
	водства	- знает особенности эксплуатации автоматизированных и автоматических технологического и вспомогательного оборудования, технических		
3.4		средств, систем, комплексов и производственных процессов;		
		- знает прогрессивные методы управления автоматизированными и авто-		
		матическими технологическим и вспомогательным оборудованием, тех-		
		нологическими средствами, системами и комплексами;		
		- требования к автоматизированному и автоматическому технологическо-		
		го и вспомогательного оборудования, технологических средств, систем и		
		комплексов, производственных процессов;		
		- знает прогрессивные методы проектирования автоматизированных и		
	автоматических технологического и вспомогательного			
		технческих средств, систем, комплексов и производственных процессов;		

Уметь: (умения обозначаются кодами – У.1, У.2 и т.д.):

Код умения	я Результаты обучения Показатели оценки результатов		
1	2	3	
	выполнять анализ тех-	- умеет ориентироваться в информационном пространстве в области	
	нологических процес-	автоматизации технологического и вспомогательного оборудования,	
	сов и оборудования как	технологических средств, систем и комплексов, средств оснащения и	
	объектов автоматиза-	производственных процессов как объектов автоматизации;	
	ции и управления	- умеет пользоваться справочными материалами;	
		- умеет применять систему фундаментальных знаний (математиче-	
		ских, естественнонаучных, инженерных и пр.) при анализе, выборе	
У.1		методов и средств автоматизации средств оснащения, оборудования,	
		систем, комплексов и процессов;	
		- владеет методиками изучения и анализа средств, оборудования,	
		оснащения, систем и комплексов, технологических и производствен-	
		ных процессов как объектов автоматизации и управления;	
		- производит анализ технологического и вспомогательного оборудо-	
		вания, технических средств, систем, комплексов, производственных	
		процессов как объектов автоматизации;	
	выбирать рациональ-	- умеет выбирать средства автоматизации при выполнении профес-	
	ные технологические	сиональных задач;	
	процессы изготовле-	- умеет выбирать современное оборудование, средства автоматиза-	
	ния продукции отрас-		
	ли в условиях автома-		
	тизированного и ав-	- применяет систему фундаментальных знаний при выборе методов	
37.0	томатического произ-	и средств автоматизации технологического и вспомогательного	
У.2	водства, эффективное	оборудования, технологических средств, систем и комплексов,	
	оборудование	средств оснащения и производственных процессов;	
		- умеет обосновывать требования к технологическому и вспомога-	
		тельному оборудованию, техническим средствам, системам и ком-	
		плексам, технологическим производственных процессов;	
		- решает принципиальные вопросы автоматизации технологическо-	
		го и вспомогательного оборудования, технических средств, систем,	
		комплексов и производственных процессов;	

1	2	3		
	выбирать для данного	- умеет классифицировать средства автоматизации, оборудование,		
	технологического про-	производства;		
цесса функциональ выбирает параметры и характеристики средств автом				
	ную схему автомати- технологического и вспомогательного оборудования, технич			
	зации	средств, систем, комплексов, производственных процессов;		
		- умеет выбирать необходимые технические данные для обосно-		
		ванного принятия решений по проектированию технологического		
		и вспомогательного оборудования, технологических средств, систем		
		и комплексов, средств оснащения и производственных процессов;		
		- самостоятельно осуществляет поиск и анализ необходимой инфор-		
		мации при разработке производственных систем, основанных на		
y.3	применении современного программно-управляемого технолог			
временных информационных и информационно-к		ского оборудования, средств автоматизации с использованием со-		
		ционных технологий и инструментальных средств;		
		- умеет использовать современные оборудование, транспортно-		
		технологические средства, системы и комплексы при решении про-		
		фессиональных задач, автоматизации производственных процессов;		
		- обосновывает требования к технологическому и вспомогательному		
		оборудованию, техническим средствам, системам, комплексам, про-		
	изводственным процессам;			
		- умеет выбирать для данного технологического процесса функцио-		
		нальную схему автоматизации.		

Владеть навыками: (навыки обозначаются кодами – Н.1, Н.2 и т.д.):

Код владения	Результаты обучения	Показатели оценки результатов	
1	2	3	
H.1		- владеет навыками использования методики изучения научно- технической информации, отечественный и зарубежный опыт в области автоматизации технологического и вспомогательного оборудования, технических средств, систем и комплексов, средств оснащения и производственных процессов; - владеет навыками изучения и анализа научно-технической ин- формации, отечественного и зарубежного опыта в сфере автоматиза- ции технологического и вспомогательного оборудования, техни- ческих средств, систем, комплексов, производственных процес- сов по соответствующему профилю подготовки; - применяет систему фундаментальных знаний (математических, естественно-научных, инженерных и пр.) для автоматизации техно- логического и вспомогательного оборудования, технических средств, систем, комплексов, производственных процессов; - изучение и анализ дополнительных материалов по изучаемой дисциплине; - осуществляет сбор и обобщение необходимой информации, проводит ее анализ на предмет получения необходимых данных; - владеть приемами анализа возможных вариантов решения задач в области автоматизации технологического и вспомогательного оборудования, технических средств, систем, комплексов, произ- водственных процессов;	

1	2	3	
	l -	- владеет навыками выбора микропроцессорных средств, робототехнических систем, средств автоматизации технологического и	
	рованного и автоматиче-		
	ского производства, осно-	комплексов, производственных процессов;	
		- демонстрирует навыки организации автоматизированного и	
H.2	·	автоматического производства;	
11.2	программно-управляемо-	- владеет навыками составления структурных схем автоматизиро-	
		ванных и автоматических производств при их организации;	
	рудования, микропроцес-	- владеет современными методами разработки малоотходных,	
	сорных средств, робото-	• • • • • • • • • • • • • • • • • • •	
	технических систем,	1	
	средств автоматизации	технических средств, систем, комплексов,	
	навыками выбора автома-	• • • • • • • • • • • • • • • • • • •	
	· -	нологическое и вспомогательное оборудование, технические	
	1	средства, системы, комплексы для реализации технологических	
Н.3	для реализации техноло-	процессов изготовления продукции;	
	гических процессов изготовления продукции	- владеет методологией выбора оборудования для реализации автоматизированных и автоматических технологического и	
	товления продукции	вспомогательного оборудования, технических средств, систем,	
		комплексов, производственных процессов;	
	современными программ-		
		никационных технологий, поиска необходимой информации в	
		сети Internet .в профессиональной деятельности;	
	_	- владеет навыками работы на компьютерной технике с графиче-	
	т.п.	скими пакетами для получения конструкторских, технологиче-	
		ских и других документов,	
H.4		- использует при работе современные программные, мультиме-	
		дийные средства, интернет-технологии;	
		- владеет навыками проектирования системы автоматизации с	
		использованием информационных технологий;	
		- владеет навыками использования инструментальных программ-	
		ных средств интерактивных графических систем, актуальных для	
		современного производства,	

2.1 Промежуточная аттестация по дисциплине

Дисциплина в учебном плане относится к блоку Б1.В.ОД.8. Блок 1. Вариативная часть. Дисциплины обязательные.

Формой промежуточной аттестации дисциплины «Автоматизация производственных процессов» является – зачёт с оценкой, выставляемый по сумме набранных баллов, согласно положению о кредитно-модульной системе (КМС).

Дисциплина изучается в 7-м семестре и относится к блоку обязательных дисциплин – блоку А, согласно разделению дисциплин учебного плана на блоки по КМС.

2.2 Перечень оценочных средств

Код оце- ночного средства	Наименование оценочного средства	Краткая характеристика оценочного средства	Представление оценоч- ного средства
Л1-Л4	Лабораторная работа № 1-4	Представление студентом наработанной информации по заданной тематике. Оценка способности студента применить полученные ранее знания для проведения анализа и выполнения поставленных	выполнению лаборатор- ных работ
		заданий, составления выводов.	

1	2	3	4
ПР1-ПР4	Практическая	Средство проверки умений применять полученные	Комплект заданий для
	работа № 1-4	знания по заранее определенной методике для	выполнения практической
		решения задач или заданий по модулю или дисци-	работы
		плине в целом.	
К1-К2	Модульный	Средство проверки умений применять полученные	Перечень тем для мо-
	контроль	знания для решения задач определенного типа по	дульных работ.
		теме или разделу	Комплект контрольных
			заданий по вариантам

2.3 Расшифровка компетенций через планируемые результаты обучения

Связь между формируемыми компетенциями и планируемыми результатами обучения представлена в следующей таблице:

Таблица 2.3.1 – Связь между формируемыми компетенциями и планируемыми результатами обучения для направления 15.03.02 – «Технологические машины и оборудование»

Код		- •	освоения дисциплины ования компетенций	Средства и технологии оценки	
компетенции	Знать (3)	Уметь (У)	Владеть навыками (Н)	ородотии темпологии одошии	
ПК-12	3.1, 3.2, 3.3, 3.4	У.1, У.2, У.3	H.1, H.2, H.3, H.4	Л1, Л2, Л3, Л4, ПР1, ПР2, ПР3, ПР4, К1, К2	
ПК-15	3.1, 3.2, 3.3, 3.4	У.1, У.2, У.3	H.1, H.2, H.3, H.4	Л1, Л2, Л3, Л4, ПР1, ПР2, ПР3, ПР4, К1, К2	

2.4 Этапы формирования компетенций

Раздел дисци- плины	Темы раздела, практик (семинаров), лабораторные работы	Коды компе- тенций	Знания, умения, навыки	Оценоч- ные средства
1	2	3	4	5
Раздел 1. Основные понятия о системах автоматизации. Механизация и автоматизация производства.	Тема 1.1 Определение, цель дисциплины. Термины и определения в области автоматизации производства развития автоматизации производства. Этапы и тенденции развития автоматизации машиностроения. Основные направления и тенденции развития автоматизации производства.	ПК-12, ПК-15	3.1, 3.2, 3.3, 3.4, y.1, y2, H.1, H.2, H.3., H.4	K1
	Тема 1.2 Уровни автоматизации производства. Механизация и автоматизация производственных процессов. Виды автоматизации производства. Понятия полуавтомат и автомат. Классификация полуавтоматов и автоматов	ПК-12, ПК-15	3.1, 3.2, 3.3, 3.4, Y.1, Y2, H.1, H.2, H.3., H.4	К1, ПР1
Раздел 2. Автоматизация различных типов производств: гибкая и жесткая автоматизация	Тема 2.1 Автоматизация производства. Реализация первой ступени автоматизации на уровне технологического оборудования. Автоматические линии. Автоматизация поточного производства.	ПК-12, ПК-15	3.1, 3.2, 3.3, 3.4, y.1, y2, y.3, H.1, H.2, H.3., H.4	К1, ЛР1, ПР2

1	2	3	4	5
Раздел 2. Автоматизация различных типов производств: гибкая и жесткая автоматизация	Тема 2.2 Гибкость производственного процесса и оборудования. Систематизация оборудования по степени гибкости. Формы гибкости. Гибкая и жесткая автоматизация. Разделение ГПС по организационным признакам: ГПМ, ГАУ, ГАЛ, ГАЦ и ГАЗ.	ПК-12, ПК-15	3.1, 3.2, 3.3, 3.4, Y.1, Y2, Y.3, H.1, H.2, H.3., H.4	К1, ЛР1, ПР2
Раздел 3. Элементная технология автоматизированных производств.	Тема 3.1 Автоматизация загрузочно-разгрузочных операций. Виды и функции загрзочно-разгрузочных устройств. Обеспечение межоперационного накопления, хранения и перемещения объектов.		3.1, 3.2, 3.3, 3.4, y.1, y2, y.3, H.1, H.2, H.3., H.4	К2, ПР3, ЛР2
	Тема 3.2 Автоматизация загрузки штучных объектов. Бункерно-магазинные устройства и системы. Ориентация и подача объектов на обработку. Магазинные и бункерно-магазинные устройства.	ПК-12, ПК-15	3.1, 3.2, 3.3, 3.4, y.1, y2, y.3, H.1, H.2, H.3., H.4	К2, ПР3, ЛР2
	Тема 3.3 Контрольно-измерительные и регулирующие средства автоматизации. Основные понятия и определения. Измерительные приборы и преобразователи. Датчики и их виды. Основные характеристики и классификация датчиков.	ПК-12, ПК-15	3.1, 3.2, 3.3, 3.4, y.1, y2, y.3, H.1, H.2, H.3., H.4	К2, ЛР3
Раздел 4. Комплексная автоматизация производствен- ных систем.	Тема 4.1 Промышленные роботы — универсальное техническое средство автоматизации. Классификация промышленных роботов (ПР). Манипуляторы и автооператоры. Системы управления ПР и их классификация. Захватные устройства ПР.	ПК-12, ПК-15	3.1, 3.2, 3.3, 3.4, y.1, y2, y.3, H.1, H.2, H.3., H.4	К2, ПР4, ЛР4
	Тема 4.2 Системы обеспечения функционирования автоматизированных производств. Автоматизированные транспортно-складские системы (АТСС): понятие, требования, функции. Состав и структурнокомпоновочные схемы АТСС. Автоматизированные складские системы. Устройства робокарного транспортирования.	ПК-12, ПК-15	3.1, 3.2, 3.3, 3.4, y.1, y2, y.3, H.1, H.2, H.3., H.4	К2, ПР4, ЛР4

2.5 Общая шкала оценки образовательных достижений согласно кредитно-модульной системе

Согласно Положению о кредитно-модульной системе обучения ИТИ ПГУ им. Т.Г. Шевченко, итоговая оценка представляет собой сумму баллов, полученных студентом по итогу освоения дисциплины (модуля):

Оценка в 100-	Оценка	Буквенные эквиваленты оценок в шкале ЗЕ		
балльной шкале	в традиционной шкале	(% успешно аттестованных)		
88-100	5 (отлично)	А (отлично) – 88-100 баллов		
70.97	1 (xxxx xxxxx)	В (очень хорошо) – 80-87 баллов		
10-87	//LX / / (VODOIIIO)			
50-69	2 (11700 70700011770 71 110)	D(удовлетворительно) – 60-69 баллов		
30-09	3 (удовлетворительно)	Е(посредственно) – 50-59 баллов		
		Fx- неудовлетворительно, с возможной пересдачей – 21-49		
0.40	2	баллов		
0–49	(неудовлетворительно)	F- неудовлетворительно, с повторным изучением дисциплины		
		С (хорошо) – 70-79 баллов D(удовлетворительно) – 60-69 баллов Е(посредственно) – 50-59 баллов Fx— неудовлетворительно, с возможной пересдачей – 21-49 баллов		

Расшифровка уровня знаний, соответствующего полученным баллам, дается в таблице, указанной ниже

	"Отлично" - теоретическое содержание курса освоено полностью, без пробелов, необходимые практи-
	ческие навыки работы с освоенным материалом сформированы, все предусмотренные программой
A	обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к
	максимальному.
	"Очень хорошо" - теоретическое содержание курса освоено полностью, без пробелов, необходимые
В	практические навыки работы с освоенным материалом в основном сформированы, все предусмотрен-
"	ные программой обучения учебные задания выполнены, качество выполнения большинства из них
	оценено числом баллов, близким к максимальному.
	"Хорошо" - теоретическое содержание курса освоено полностью, без пробелов, некоторые практиче-
C	ские навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные про-
	граммой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено ми-
	нимальным числом баллов, некоторые виды заданий выполнены с ошибками.
	"Удовлетворительно" - теоретическое содержание курса освоено частично, но пробелы не носят су-
D	щественного характера, необходимые практические навыки работы с освоенным материалом в основ-
"	ном сформированы, большинство предусмотренных программой обучения учебных заданий выполне-
	но, некоторые из выполненных заданий, возможно, содержат ошибки.
	"Посредственно" - теоретическое содержание курса освоено частично, некоторые практические навыки
E	работы не сформированы, многие предусмотренные программой обучения учебные задания не выпол-
	нены, либо качество выполнения некоторых из них оценено числом баллов, близким к минимальному.
	"Условно неудовлетворительно" - теоретическое содержание курса освоено частично, необходимые
	практические навыки работы не сформированы, большинство предусмотренных программой обучения
FX	учебных заданий не выполнено, либо качество их выполнения оценено числом баллов, близким к ми-
	нимальному; при дополнительной самостоятельной работе над материалом курса возможно повыше-
	ние качества выполнения учебных заданий.
	"Безусловно неудовлетворительно" - теоретическое содержание курса не освоено, необходимые
F	практические навыки работы не сформированы, все выполненные учебные задания содержат грубые
I	ошибки, дополнительная самостоятельная работа над материалом курса не приведет к какому-либо
	значимому повышению качества выполнения учебных заданий.
	значимому повышению качества выполнения учебных заданий.

3. ПЕРЕЧЕНЬ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ (КОС) И ТИПОВЫЕ ЗАДАНИЯ

3.1 Состав контрольных точек по дисциплине (модулю)

Состав контрольных точек по дисциплине (модулю) и выделенные баллы на указанные виды учебной деятельности приведены в таблице ниже:

Наименование	Код оценоч-	Аудиториод	Количест	Количество баллов		
КОС	ного сред- ства	Аудиторная или внеаудиторная	Минимальное	Максимальное		
Контрольная точка 1 (КТ1)			22,5	45		
Модульный контроль № 1	К 1	Аудиторная	15	30		
Практическая работа № 1	ПР 1	Аудиторная	2,5	5		
Практическая работа № 2	ПР 2	Аудиторная	2,5	5		
Лабораторная работа № 1	ЛР 1	Выездная	2,5	5		
Контрольная точка 2 (КТ2)			27,5	55		
Модульный контроль №2	К2	Аудиторная	15	30		
Практическая работа № 3	ПР 3	Аудиторная	2,5	5		
Практическая работа № 4	ПР 4	Аудиторная	2,5	5		
Лабораторная работа № 2	ЛР 2	Выездная	2,5	5		
Лабораторная работа № 3	ЛР 3	Выездная	2,5	5		
Лабораторная работа № 4	ЛР 4	Выездная	2,5	5		
		Итого	50	100		

3.2 Типовые задания и методика выставления баллов по каждому виду КОС КТ1

3.2.1. Практическая работа ПР1. Перечень заданий и методика выставления баллов

Тема: Производительность автоматизированного оборудования.

Практическая работа состоит из теоретической части, где рассмотрены и описаны способы определения производительности автоматизированного и автоматического оборудования (производственной системы), особенности выбора оборудования в зависимости от конкретных условий производства, уровня автоматизации и прочих требований; практической части, где изложена методика определения производительности при условии обеспечения необходимого уровня автоматизации производственной системы согласно установленным критериям и выбору средств обеспечения функционирования; и контрольных вопросов.

Задания к практической работе № 1:

- 1. Изучить и проанализировать в зависимости от конкретных производственных условий тип производства и возможности автоматизации в зависимости от предъявляемых требований.
- 2. Изучить и проанализировать уровень автоматизации предлагаемой производственной системы.
- 3. Согласно установленным критериям определить производительность предлагаемой производственной системы.

Контрольные вопросы к практической работе № 1:

- 1. Дайте определение автоматизации производства.
- 2. Дайте определение «автоматизированное производство», «автоматическое производство».
- 3. Какие выделяют виды автоматизации производства?
- 4. Согласно каким критериям оценивают уровень гибкости производственной системы?
- 5. Чем отличны друг от друга автомат и полуавтомат?
- 6. Перечислите этапы автоматизации производства.
- 7. В чем заключаются отличия между специальным, специализированным и универсальным автоматическим оборудованием?

Критерии оценки КОС практической работы ПР1

№ п\п	Параметры КОС	Балль
1	Соответствие содержания заданию	0,5
2	Понимание методики и умение ее правильно применить	1
3	Полнота отражения изучаемого материала	1
4	Грамотность и логичность изложения материала, достаточность пояснений	1
5	Наличие доказательств, свидетельствующих о понимании студентов учебного материала	1
6	Своевременность сдачи	0,5
	Итоговое количество баллов	5

В зависимости от набранного итогового количества баллов определяется уровень владения студентом представленного материала:

Количество набранных баллов за представленный КОС	Уровни владения материалом
4-5 баллов	Высокий уровень владения материалом
3-2 баллов	Средний уровень владения материалом
1 баллов	Низкий уровень владения материалом
0 балла	Низкий уровень не достигнут

КОС ПР1 считается освоенным, если набрано от 3 баллов и выше.

3.2.2. Практическая работа ПР2. Перечень заданий и методика выставления баллов

Тема: Организационно-технологические схемы ГПС. Расчет коэффициентов гибкости автоматизированного технологического оборудования. Расчет параметров конвейерной линии.

Практическая работа состоит из теоретической части, где рассмотрены и описаны требования, необходимые для внедрения автоматизированного производства (производственной системы), особенности выбора оборудования с конкретными условиями производства в зависимости от его типа, уровня автоматизации и прочих требований; практической части, где изложена методика анализа по оценке требований к производственным условиям для обеспечения необходимого уровня автоматизации производственной системы согласно установленным критериям и выбору средств обеспечения функционирования средств; практической части, включающей расчёты параметров поточной линий по вариантам, и контрольных вопросов.

Задания к практической работе № 2:

- 1. Изучить и проанализировать уровень гибкости предлагаемой производственной системы согласно критериям.
- 2. Согласно установленным критериям охарактеризовать уровень гибкости предлагаемой производственной системы.
- 3. Изучить, проанализировать и описать организационно-технологическую схему рассматриваемой производственной системы.
 - 4. Представить пример и рассмотреть ГПС согласно вышеуказанным пунктам.
 - 5. Решить задачу согласно варианта.
 - 6. Оформить отчёт по практической работе.

Задача для практической работы № 2.

Определить длину конвейерной ленты, если конвейер проходит по длине оборудования. Диаметр барабана конвейера составляет 0,5 м. Данные для расчетов приведены в таблице 3.2.1.

No	Расстояние между	Расстояние от крайних единиц обо-		Длина об	борудова	ния, мет	p.
п/п	оборудованием, метр.	рудования до осей барабана, метр	L_{010}	L_{015}	L_{020} ,	L_{025} .	L_{030}
1	1,5	2,1	3,2	2,4	1,85	1,2	3,5
1	2	1,8	2,75	2,2	2,1	1,2	2,6
2	2,3	1,6	2,5	1,75	1,9	1,9	2,75
3	2,05	1,75	3,05	1,5	0,75	2,2	3,2
4	1,8	2,1	2,8	1,2	1,6	0,75	2,8
5	2,6	2,3	3,2	2,5	1,5	0,85	2,9
6	1,4	1,8	1,75	1,2	1,05	2,2	3,2
7	1,75	1,5	2,75	2,2	1,75	1,05	2,85
8	1,6	2,2	1,8	1,2	3,5	0,75	3,2
9	2,1	1,8	2,6	1,75	1,5	1,2	2,5
10	1,4	1,5	1,5	1,05	0,75	2,2	2,75
11	1,2	1,6	2,75	1,8	1,6	1,05	2,5
12	1,8	2,1	3,2	2,4	1,75	2,2	2,85
13	1,5	1,75	2,5	2,25	1,5	0,8	1,8
14	2,2	1,8	2,75	2,75	2,1	1,05	3,25
15	1,4	1,6	1,8	1,8	1,35	0,75	2,6

Контрольные вопросы к практической работе № 2:

- 1. Поясните, что такое гибкая и жесткая автоматизация?
- 2. Согласно каким критериям оценивают уровень гибкости производственной системы?
- 3. Что такое и чем характеризуется ГПС?
- 4. Согласно каким критериям оценивают уровень гибкости производственной системы?
- 5. На базе какого оборудования создаются ГПС, ГАП?
- 6. Как классифицируются ГПС, на какие виды подразделяются?
- 7. Что такое ГАП?
- 8. Что такое ГПМ?
- 9. Охарактеризуйте гибкую интегрированную производственную систему.
- 10. Объясните обобщенную структурную схему ГАП.

Критерии оценки КОС практической работы ПР2

№ п\п	Параметры КОС	Балль
1	Соответствие содержания заданию	0,5
2	Понимание методики и умение ее правильно применить	1
3	Полнота отражения изучаемого материала	1
4	Грамотность и логичность изложения материала, достаточность пояснений	1
5	Наличие доказательств, свидетельствующих о понимании студентов учебного материала	1
6	Своевременность сдачи	0,5
	Итоговое количество баллов	5

В зависимости от набранного итогового количества баллов определяется уровень владения студентом представленного материала:

Количество набранных баллов за представленный КОС	Уровни владения материалом
4-5 баллов	Высокий уровень владения материалом
3-2 баллов	Средний уровень владения материалом
1 баллов	Низкий уровень владения материалом
0 балла	Низкий уровень не достигнут

КОС ПР2 считается освоенным, если набрано от 3 баллов и выше.

3.2.3. Лабораторная работа 1. Перечень заданий и методика выставления баллов

Тема: Определение уровня автоматизации оборудования и производственных систем. Изучение уровней и форм гибкости производственных систем и оборудования. Разработка структуры и компоновки ГПС.

Лабораторная работа состоит из теоретической части, где рассмотрены и описаны различные уровни и формы гибкости оборудования, систем и комплексов; практических заданий; и контрольных вопросов.

Практические задания к лабораторной работе №1:

- 1. Изучить и проанализировать назначение, принципы функционирования, основные характеристики гибкой производственной системы.
- 2. Опишите назначение, принципы функционирования, основные характеристики гибкой производственной системы.
 - 3. Изучите и опишите структурно-компоновочную схемы гибкой производственной системы.
- 4. Определите уровень автоматизации средств, оборудования гибкой производственной системы.
- 5. Изучить и проанализировать назначение, принципы функционирования, основные характеристики жесткой производственной системы.
- 6. Опишите назначение, принципы функционирования, основные характеристики жесткой производственной системы.
 - 7. Изучите и опишите структурно-компоновочную схемы жесткой производственной системы.
 - 8. Создайте отчет, где отразите ход работы.

Контрольные вопросы к лабораторной работе № 1:

- 1. Дайте определения гибкой и жесткой производственной системы.
- 2. Какие выделяют критерии определения гибкости средств, оборудования и производств?
- 3. Какие выделяют виды гибкости при систематизации средств, оборудования и производств?
 - 4. Что такое гибкая автоматизированная система?
 - 5. Что такое гибкая интегрированная производственная система?
 - 6. Что такое жесткое переналаживаемое производство, система?
 - 7. Что такое критерий гибкости?
 - 8. Перечислите структурно-компоновочную схемы производственных систем?
 - 9. Какова структура гибкой производственной системы?
 - 10. Какова структура жесткой производственной системы?

Критерии оценки КОС лабораторная работа №1 ЛР1

№ п\п	Параметры КОС	Баллы
1	Изучение, описание и анализ назначения, принципов функционирования, основных ха-	1
	рактеристик гибкой производственной системы.	
2	Изучение и описание структурно-компоновочную схемы гибкой производственной си-	1
	стемы.	
3	Изучение, описание и анализ назначения, принципов функционирования, основных ха-	1
	рактеристик жесткой производственной системы	
4	Изучение и описание структурно-компоновочную схемы жесткой производственной	1 1
	системы.	
5	Отчет по лабораторной работе №1	0,5
	Контрольные вопросы	0,5
	Итоговое количество баллов	5

В зависимости от набранного итогового количества баллов определяется уровень владения студентом представленного материала:

Количество набранных баллов за представленный КОС	Уровни владения материалом
4-5 баллов	Высокий уровень владения материалом
3-2 баллов	Средний уровень владения материалом
1 баллов	Низкий уровень владения материалом
0 балла	Низкий уровень не достигнут

КОС ЛР1 считается освоенным, если набрано от 3 баллов и выше.

3.2.4 Контрольная работа К1. Перечень заданий и методика выставления баллов

Вопросы для контрольной работы К1.

- 1. Направления развития автоматизации машиностроительного производства.
- 2. Основные понятия и определения.
- 3. Тенденции развития автоматизации машиностроительного производства.
- 4. Механизация производства и ее виды.
- 5. Понятие об автоматизации производства Виды автоматизации производства.
- 6. Классификация производств и оборудования в зависимости от степени автоматизации.
- 7. Ступени автоматизации производственных процессов.
- 8. Этапы автоматизации производственных процессов.
- 9. Автоматизация различных типов производств. Типы производств.
- 10. Гибкая и жесткая автоматизация.
- 11. Систематизация оборудования по степени гибкости. Критерии систематизации.
- 12. Гибкие производственные системы.
- 13. Гибкие автоматизированные производства.
- 14. Классификация гибких производственных систем.
- 15. Обобщённая структурная схема ГАП.

Критерии оценки КОС контрольной работы К1

№ п\п	Параметры КОС	Балль
1	Соответствие содержания заданию	3
2	Понимание методики и умение ее правильно применить	7
3	Полнота отражения изучаемого материала	7
4	Грамотность и логичность изложения материала, достаточность пояснений	4
5	Наличие доказательств, свидетельствующих о понимании студентов учебного материала	5
6	Качество оформления, соответствие оформления стандартам	2
7	Своевременность сдачи	2
	Итоговое количество баллов	30

В зависимости от набранного итогового количества баллов определяется уровень владения студентом представленного материала:

Количество набранных баллов за представленный КОС	Уровни владения материалом	
23-30 баллов	Высокий уровень владения материалом	
16-24 баллов	Средний уровень владения материалом	
8-15 баллов	Низкий уровень владения материалом	
0-7 балла	Низкий уровень не достигнут	

КОС К1 считается освоенным, если набрано от 16 баллов и выше.

3.3 Типовые задания и методика выставления баллов по каждому виду КОС КТ2

3.3.1. Лабораторная работа 2. Перечень заданий и методика выставления баллов

Тема: Изучение возможностей автоматизации процессов загрузки и подачи объектов к обрабатывающим, сборочным и другими производственным системам.

Лабораторная работа состоит из теоретической части, где рассмотрены и описаны виды загрузочно-разгрузочных устройств, их классификация, способы и методы автоматизации загрузочно-разгрузочных операций; практических заданий и контрольных вопросов.

Практические задания к лабораторной работе № 2:

- 1. Изучите и проанализируйте назначение, виды и группы загрузочно-разгрузочных устройств.
- 2. Опишите принципы функционирования, основные характеристики загрузочноразгрузочных устройств.
- 3. Изучите и опишите структурно-компоновочную схемы рассматриваемых загрузочно-разгрузочных устройств.
 - 4. Создайте отчет, где отразите ход работы.

Контрольные вопросы к лабораторной работе № 2:

- 1. Дайте определение «автоматическое загрузочно-разгрузочное устройство».
- 2. Какие выделяют функции автоматических загрузочно-разгрузочных и транспортирующих средств, устройств и систем?
- 3. Какие выделяют виды автоматических загрузочно-разгрузочных и транспортирующих средств, устройств и систем?
- 4. Как классифицируются автоматические загрузочно-разгрузочные и транспортирующие средства, устройства и системы?
- 5. Перечислите основные виды функциональных механизмов автоматических загрузочно-разгрузочных и транспортирующих средств, устройств и систем?
- 6. Перечислите основные виды бункерно-магазинных автоматических загрузочно-разгрузочных и транспортирующих средств, устройств систем?
- 7. Как классифицируются загрузочно-разгрузочные и транспортирующие средства, устройства и системы в зависимости от степени автоматизации?
- 8. Расскажите принцип работы одного из автоматических загрузочно-разгрузочных и транспортирующих средства, устройств или систем?
- 9. В чем заключатся особенности функционирования вибробункерных загрузочнотранспортирующих средств?

Критерии оценки КОС лабораторная работа № 2 ЛР 2

№ п\п	Параметры КОС	Баллы
1	Изучение, анализ, описание назначения, принципов функционирования, основных характе-	1
	ристики и виды загрузочных бункерных устройств	
2	Изучение, анализ, описание назначения, принципов функционирования, основных характе-	1
	ристики и виды магазинных загрузочных устройств	
3	Изучение, анализ, описание назначения, принципов функционирования, основных характе-	1
	ристики и виды загрузочных вибробункерных устройств	
4	Отчет по лабораторной работе № 2	1
5	Контрольные вопросы	1
	Итоговое количество баллов	5

В зависимости от набранного итогового количества баллов определяется уровень владения студентом представленного материала:

Количество набранных баллов за представленный КОС	Уровни владения материалом	
4-5 баллов	Высокий уровень владения материалом	
3-2 баллов	Средний уровень владения материалом	
1 баллов	Низкий уровень владения материалом	
0 балла	Низкий уровень не достигнут	

КОС ЛР2 считается освоенным, если набрано от 3 баллов и выше.

3.3.2. Практическая работа ПР3. Перечень заданий и методика выставления баллов

Тема: Проектирование и расчет автоматических загрузочных устройств. Расчет основных параметров механизма ориентации бункерного загрузочного устройства. Определение производительности бункерно-магазинного загрузочного устройства.

Практическая работа состоит из теоретической части, где рассмотрена и описана методика расчёта параметров механизма ориентации, и практических заданий по вариантам.

Задача для практической работы № 3.

Рассчитать параметры механизма ориентации цилиндрического бункера с расположением карманов по хорде для цилиндрических деталей диаметром d мм и длиной l мм при условии, что 4,5 > Vd > 2,5. Коэффициент вероятности захвата (заполнения карманов) $K_{6,3}$. Рабочий диск совершает v об./мин. Тип детали и ее размеры, значения коэффициента вероятности захвата (заполнения карманов) $K_{6,3}$ приведены в таблице 3.3.1.

Таблица 3.3.1.

№ п/п	Тип	Диаметр, d мм	Длина, l мм	Коэфф-нт запаса к з тр,	Скорость вращения диска, об./мин.
1	втулка	12	35	0,5	2,5
2	колпачок	15	45	0,4	2
3	валик	8	25	0,8	2,5
4	штифт	10	28	0,85	3,5
5	втулка	9	30	0,45	2,5
6	валик	12	40	0,9	2
7	колпачок	14	50	0,5	2,5
8	штифт	5	15	0,85	3,5
9	втулка	15	50	0,5	2,5
10	колпачок	6	20	0,5	3
11	валик	10	30	0,4	2,5
12	штифт	5	18	0,85	3,5
13	валик	8	28	0,5	3
14	валик	10	32	0,4	2,5
15	втулка	12	40	0,5	2,5

Критерии оценки КОС практической работы ПРЗ

№ п\п	Параметры КОС	Балль
1	Соответствие содержания заданию	0,5
2	Понимание методики и умение ее правильно применить	1
3	Полнота отражения изучаемого материала	1
4	Грамотность и логичность изложения материала, достаточность пояснений	1
5	Наличие доказательств, свидетельствующих о понимании студентов учебного материала	1
6	Своевременность сдачи	0,5
	Итоговое количество баллов	5

В зависимости от набранного итогового количества баллов определяется уровень владения студентом представленного материала:

Количество набранных баллов за представленный КОС	Уровни владения материалом	
4-5 баллов	Высокий уровень владения материалом	
3-2 баллов	Средний уровень владения материалом	
1 баллов	Низкий уровень владения материалом	
0 баллов	Низкий уровень не достигнут	

КОС ПРЗ считается освоенным, если набрано от 3 баллов и выше.

3.3.3. Практическая работа ПР4. Перечень заданий и методика выставления баллов

Тема: Выбор промышленных роботов для автоматизации систем обслуживания гибких производственных систем. Расчет потребности в электроробокарах.

Практическая работа состоит из теоретической части, где рассмотрена и описана методика выбора промышленных роботов и расчёта потребности в электроробокарах и практических заданий по вариантам.

Задачи для практической работы № 4.

Задача
Масса перевозимого груза составляет 20 тонн. Грузоперевозки осуществляются робокаром от пункта отправления к пункту назначения на расстояние 60 метров со средней скоростью 50 м/мин маятниковым методом. Продолжительность загрузки составляет 8 мин., разгрузки 4 мин Грузо подъемность робокара составляет 220 кг, коэффициент его загрузки - 0,82. Плановые простои на осмотр и зарядку составляют 8% времени. Определить число робокаров и количество перевозок транспортный цикл и продолжительность эффективной работы транспортного средства. Продолжительность смены составляет 7,85 часов.
Задача .

Масса перевозимого груза составляет 14 тонн. Грузоперевозки осуществляются робокаром от пункта отправления к пункту назначения на расстояние 55 метров со средней скоростью 40 м/мин. маятниковым методом. Продолжительность загрузки составляет 7 мин., разгрузки 3 мин.. Грузоподъемность робокара составляет 280 кг, коэффициент его загрузки - 0,78. Плановые простои на осмотр и зарядку составляют 12% времени. Определить число робокаров и количество перевозок, транспортный цикл и продолжительность эффективной работы транспортного средства. Продолжительность смены составляет 8 часов.

Задача	


Масса перевозимого груза составляет 12 тонн. Грузоперевозки осуществляются робокаром от пункта отправления к пункту назначения на расстояние 45 метров со средней скоростью 30 м/мин. маятниковым методом. Продолжительность загрузки составляет 7,5 мин., разгрузки 3,5 мин.. Грузоподъемность робокара составляет 250 кг, коэффициент его загрузки - 0,85. Плановые простои на осмотр и зарядку составляют 10% времени. Определить число робокаров и количество перевозок, транспортный цикл и продолжительность эффективной работы транспортного средства. Продолжительность смены составляет 7,8 часов.

Зада	ча	
Эиди	114	

Масса перевозимого груза составляет 9 тонн. Грузоперевозки осуществляются робокаром от пункта отправления к пункту назначения на расстояние 60 метров со средней скоростью 45 м/мин. маятниковым методом. Продолжительность загрузки составляет 6,5 мин., разгрузки 3,5 мин.. Грузоподъемность робокара составляет 320 кг, коэффициент его загрузки - 0,94. Плановые простои на осмотр и зарядку составляют 8% времени. Определить число робокаров и количество перевозок, транспортный цикл и продолжительность эффективной работы транспортного средства. Продолжительность смены составляет 8 часов.

Зад	ячя	
эцд	u iu	

Масса перевозимого груза составляет 12 тонн. Грузоперевозки осуществляются робокаром от пункта отправления к пункту назначения на расстояние 75 метров со средней скоростью 48 м/мин. маятниковым методом. Продолжительность загрузки составляет 6,5 мин., разгрузки 3,5 мин.. Грузоподъемность робокара составляет 280 кг, коэффициент его загрузки - 0,86. Плановые простои на осмотр и зарядку составляют 7% времени. Определить число робокаров и количество перевозок, транспортный цикл и продолжительность эффективной работы транспортного средства. Продолжительность смены составляет 7,85 часов.

Масса перевозимого груза составляет 18 тонн. Грузоперевозки осуществляются робокаром от пункта отправления к пункту назначения на расстояние 75 метров со средней скоростью 48 м/мин. маятниковым методом. Продолжительность загрузки составляет 6,5 мин., разгрузки 3,5 мин.. Грузоподъемность робокара составляет 280 кг, коэффициент его загрузки - 0,86. Плановые простои на осмотр и зарядку составляют 7% времени. Определить число робокаров и количество перевозок, транспортный цикл и продолжительность эффективной работы транспортного средства. Продолжительность смены составляет 7,85 часов.

Задача	

Масса перевозимого груза составляет 25 тонн. Грузоперевозки осуществляются робокаром от пункта отправления к 8 пунктам назначения со средней скоростью 40 м/мин. по кольцевому маршруту общей протяженностью 220 метров. Продолжительность загрузки составляет 10 мин., каждой разгрузки 3 мин. Грузоподъемность робокара составляет 250 кг, коэффициент его загрузки - 0,92. Плановые простои на осмотр и зарядку составляют 7% времени. Определить число робокаров и количество перевозок, транспортный цикл и продолжительность эффективной работы робокара. Продолжительность смены составляет 8 часов.

Задача	
--------	--

Масса перевозимого груза составляет 16 тонн. Грузоперевозки осуществляются робокаром от пункта отправления к 6 пунктам назначения со средней скоростью 50 м/мин. по кольцевому маршруту общей протяженностью 340 метров. Продолжительность загрузки составляет 12 мин., каждой разгрузки 4 мин. Грузоподъемность робокара составляет 400 кг, коэффициент его загрузки - 0,86. Плановые простои на осмотр и зарядку составляют 8% времени. Определить число робокаров и количество перевозок, транспортный цикл и продолжительность эффективной работы робокара. Продолжительность смены составляет 8 часов.

Задача	3a _z	цача	
--------	-----------------	------	--

Масса перевозимого груза составляет 14 тонн. Грузоперевозки осуществляются робокаром от пункта отправления к 9 пунктам назначения со средней скоростью 35 м/мин. по кольцевому маршруту общей протяженностью 440 метров. Продолжительность загрузки составляет 9 мин., каждой разгрузки 2,5 мин. Грузоподъемность робокара составляет 450 кг, коэффициент его загрузки - 0,8.

Плановые простои на осмотр и зарядку составляют 10% времени. Определить число робокаров и количество перевозок, транспортный цикл и продолжительность эффективной работы робокара. Продолжительность смены составляет 8 часов.

Задача	
эиди ти	

Масса перевозимого груза составляет 12 тонн. Грузоперевозки осуществляются робокаром от пункта отправления к 5 пунктам назначения со средней скоростью 42 м/мин. по кольцевому маршруту общей протяженностью 280 метров. Продолжительность загрузки составляет 8,5 мин., каждой разгрузки 3,2 мин. Грузоподъемность робокара составляет 460 кг, коэффициент его загрузки - 0,9. Плановые простои на осмотр и зарядкку составляют 8% времени. Определить число робокаров и количество перевозок, транспортный цикл, продолжительность эффективной работы робокара. Продолжительность смены составляет 8 часов.

Критерии оценки КОС практической работы ПР4

№ п\п	Параметры КОС	Балль
1	Соответствие содержания заданию	0,5
2	Понимание методики и умение ее правильно применить	1
3	Полнота отражения изучаемого материала	1
4	Грамотность и логичность изложения материала, достаточность пояснений	1
5	Наличие доказательств, свидетельствующих о понимании студентов учебного материала	1
6	Своевременность сдачи	0,5
	Итоговое количество баллов	5

В зависимости от набранного итогового количества баллов определяется уровень владения студентом представленного материала:

Количество набранных баллов за представленный КОС	Уровни владения материалом
4-5 баллов	Высокий уровень владения материалом
3-2 баллов	Средний уровень владения материалом
1 баллов	Низкий уровень владения материалом
0 балла	Низкий уровень не достигнут

КОС ПР4 считается освоенным, если набрано от 3 баллов и выше.

3.3.4. Лабораторная работа 3. Перечень заданий и методика выставления баллов

Тема: Изучение контрольно-измерительных и регулирующих средства автоматизации, принципов их функционирования и основных характеристик.

Лабораторная работа состоит из теоретической части, где рассмотрены и описаны виды автоматического контроля, автоматических контролирующих устройств, их классификация по функциональному назначению, способы и методы автоматического контроля технических средств, оборудования, систем и комплексов; практических заданий; и контрольных вопросов.

Практические задания к лабораторной работе № 3:

- 1. Изучить и проанализировать назначение, принципы функционирования, основные характеристики устройства активного автоматического контроля параметров.
- 2. Опишите назначение, принципы функционирования, основные характеристики устройства активного автоматического контроля параметров.

- 3. Изучите и опишите структурно-компоновочную схемы рассматриваемого устройства активного автоматического контроля параметров.
- 4. Определите метод, способ и группу по функциональному назначению устройства активного автоматического контроля параметров.
 - 5. Создайте отчет, где отразите ход работы.

Контрольные вопросы к лабораторной работе № 3:

- 1. Дайте определение «устройство автоматического контроля».
- 2. Дайте определение «устройство активного автоматического контроля».
- 3. Какие выделяют методы активного автоматического контроля?
- 4. Что такое пассивный автоматической контроль и как он осуществляется?
- 5. Какие выделяют способы активного автоматического контроля?
- 6. Какие из способов активного автоматического контроля обладают наименьшими погрешностями?
 - 7. Что такое датчик?
 - 8. Перечислите основные виды датчиков.
 - 9. Что такое контрольно-измерительные преобразователи?

Критерии оценки КОС лабораторная работа № 3 ЛР 3

№ п\п	Параметры КОС	Баллы
1	Изучение и анализ, описание назначения, принципов функционирования, основных	1
	характеристики устройства активного автоматического контроля параметров	
2	Изучение и анализ, описание назначения, принципов функционирования, основных	
	характеристики устройства активного автоматического контроля параметров	
3	Изучение, описание и анализ структурно-компоновочную схемы устройства актив-	
	ного автоматического контроля параметров	
4	Отчет по лабораторной работе № 3	1
5	Контрольные вопросы	1
	Итоговое количество баллов	5

В зависимости от набранного итогового количества баллов определяется уровень владения студентом представленного материала:

Количество набранных баллов за представленный КОС	Уровни владения материалом
5 баллов	Высокий уровень владения материалом
3-4 баллов	Средний уровень владения материалом
1-2 баллов	Низкий уровень владения материалом
0 балла	Низкий уровень не достигнут

КОС ЛРЗ считается освоенным, если набрано от 3 баллов и выше.

3.3.5. Лабораторная работа 4. Перечень заданий и методика выставления баллов

Тема: Комплексная автоматизация производственной системы. Системы обеспечения функционирования автоматизированных производств

Лабораторная работа состоит из теоретической части, где рассмотрены и описаны различные средства автоматизации транспртно-складских операций и процессов, оборудование, средства оснащения и системы; практических заданий; и контрольных вопросов.

Практические задания к лабораторной работе № 4:

- 1. Изучить и проанализировать виды, назначение, принципы функционирования, основные характеристики транспртно-складских средств, оборудования, систем и комплексов производственной системы.
- 2. Изучите и опишите различные виды транспртно-складских средств, оборудования, систем и комплексов производственной системы.
- 3. Изучите и опишите структурно-компоновочную схемы транспртно-складских средств, оборудования, систем и комплексов производственной системы.
 - 4. Изучите и опишите средство робокарного транспортирования
 - 5. Создайте отчет, где отразите ход работы.

Контрольные вопросы к лабораторной работе № 4:

- 1. Дайте определение «автоматическая транспортно-складская система».
- 2. Какие выделяют функции автоматических транспорт-складских средств, устройств, систем и комплексов?
 - 3. Какие выделяют виды автоматических транспортно-складских систем?
- 4. Расскажите принцип работы одного из автоматических загрузочно-разгрузочных и транспортирующих средства, устройств или систем.
 - 5. Что такое устройства робокарного транспортирования?

Критерии оценки КОС лабораторная работа № 4 ЛР4

№ п\п	Параметры КОС	Баллы
1	Изучение, описание и анализ назначения, принципов функционирования, основных характе-	
	ристик и параметров различных видов транспртно-складских системы	
2	Изучение, описание и анализ структурно-компоновочную схемы транспртноскладской си-	
	стемы	
3	Изучение, описание и анализ назначения, принципов функционирования, основных характе-	
	ристик и параметров различных видов транспортно-складских систем	
4	Изучение, описание и анализ назначения, принципов функционирования, основных характе-	
	ристик и параметров различных видов средств робокарного транспортирования	
5	Отчет по лабораторной работе № 4	0,5
6	Контрольные вопросы	0,5
	Итоговое количество баллов	5

В зависимости от набранного итогового количества баллов определяется уровень владения студентом представленного материала:

Количество набранных баллов за представленный КОС	Уровни владения материалом
5 баллов	Высокий уровень владения материалом
3-4 баллов	Средний уровень владения материалом
1-2 баллов	Низкий уровень владения материалом
0 балла	Низкий уровень не достигнут

КОС ЛР4 считается освоенным, если набрано от 3 баллов и выше.

3. 3.6. Контрольная работа К2. Перечень заданий и методика выставления баллов

Вопросы для контрольной работы К2.

- 1. Автоматизация загрузочных операций. Автоматизация и механизация загрузки и разгрузки.
- 2. Классификация изделий по отношению к процессу загрузки. Классификация штучных заготовок по отношению к процессу автоматической загрузки.

- 3. Автоматизация загрузки штучных заготовок. Классификация загрузочных устройств в зависимости от степени автоматизации.
- 4. Автоматизация загрузки штучных заготовок. Функции загрузочных устройств.
- 5. Загрузочные устройства в условиях различных типов производств. Виды и группы загрузочно-разгрузочных устройств.
- 6. Магазинные загрузочные устройства. Магазины.
- 7. Бункерные загрузочные устройства. Бункерно-магазинные загрузочные устройства.
- 8. Бункерные загрузочные устройства. Основные виды бункеров.
- 9. Вибробункерные загрузочные устройства и принцип их функционирования.
- 10. Автоматический контроль. Виды контроля по формам воздействия на объект. Активный автоматический контроль.
- 11. Методы активного автоматического контроля.
- 12. Способы активного автоматического контроля.
- 13. Контактные способы активного автоматического контроля.
- 14. Классификация устройств активного автоматического контроля по функциональному назначению: устройства, осуществляющие контроль в процессе обработки; устройства входного контроля; устройства, осуществляющие контроль и подналадку.
- 15. Измерительные средства автоматизации. Датчики. Классификация датчиков.
- 16. Датчики. Основные характеристики датчиков.
- 17. Датчики. Классификация датчиков.
- 18. Основные сведения о промышленных роботах. Манипуляторы и автооператоры. Промышленные роботы. Роль, понятие и назначение промышленных роботов.
- 19. Разновидности ПР.
- 20. Классификация и индексация промышленных роботов.
- 21. Захватные устройства ПР. Классификация захватных устройств промышленных роботов.
- 22. Классификация промышленных роботов по числу степеней подвижности.
- 23. Системы управления ПР и способы их программирования.
- 24. Классификация систем управления ПР.
- 25. Автоматизированные транспортно-складские системы (ATCC). Функции ATCC.
- 26. Состав автоматизированных транспортно-складских систем. Виды транспортных устройств и складов.

Критерии оценки КОС контрольной работы К2

№ п\п	Параметры КОС	Балль
1	Соответствие содержания заданию	3
2	Понимание методики и умение ее правильно применить	7
3	Полнота отражения изучаемого материала	7
4	Грамотность и логичность изложения материала, достаточность пояснений	4
5	Наличие доказательств, свидетельствующих о понимании студентов учебного материала	5
6	Качество оформления, соответствие оформления стандартам	2
7	Своевременность сдачи	2
	Итоговое количество баллов	30

В зависимости от набранного итогового количества баллов определяется уровень владения студентом представленного материала:

Количество набранных баллов за представленный КОС	Уровни владения материалом
23-30 баллов	Высокий уровень владения материалом
16-24 баллов	Средний уровень владения материалом
8-15 баллов	Низкий уровень владения материалом
0-7 балла	Низкий уровень не достигнут

Примеры задач для КТ2.
Задача
Масса перевозимого груза составляет 20 тонн. Грузоперевозки осуществляются робокаром от пункта отправления к пункту назначения на расстояние 60 метров со средней скоростью 50 м/мин. маятниковым методом. Продолжительность загрузки составляет 8 мин., разгрузки 4 мин Грузоподъемность робокара составляет 220 кг, коэффициент его загрузки - 0,82. Плановые простои на осмотр и зарядку составляют 8% времени. Определить число робокаров и количество перевозок, транспортный цикл и продолжительность эффективной работы транспортного средства. Продолжительность смены составляет 7,85 часов.
Задача
Масса перевозимого груза составляет 14 тонн. Грузоперевозки осуществляются робокаром от пункта отправления к пункту назначения на расстояние 55 метров со средней скоростью 40 м/мин. маятниковым методом. Продолжительность загрузки составляет 7 мин., разгрузки 3 мин Грузоподъемность робокара составляет 280 кг, коэффициент его загрузки - 0,78. Плановые простои на осмотр и зарядку составляют 12% времени. Определить число робокаров и количество перевозок, транспортный цикл и продолжительность эффективной работы транспортного средства. Продолжительность смены составляет 8 часов.
Задача
Масса перевозимого груза составляет 12 тонн. Грузоперевозки осуществляются робокаром от пункта отправления к пункту назначения на расстояние 45 метров со средней скоростью 30 м/мин. маятниковым методом. Продолжительность загрузки составляет 7,5 мин., разгрузки 3,5 мин Грузоподъемность робокара составляет 250 кг, коэффициент его загрузки - 0,85. Плановые простои на осмотр и зарядку составляют 10% времени. Определить число робокаров и количество перевозок, транспортный цикл и продолжительность эффективной работы транспортного средства. Продолжительность смены составляет 7,8 часов.
Задача
Масса перевозимого груза составляет 9 тонн. Грузоперевозки осуществляются робокаром от пункта отправления к пункту назначения на расстояние 60 метров со средней скоростью 45 м/мин. маятниковым методом. Продолжительность загрузки составляет 6,5 мин., разгрузки 3,5 мин Грузоподъемность робокара составляет 320 кг, коэффициент его загрузки - 0,94. Плановые простои на осмотр и зарядку составляют 8% времени. Определить число робокаров и количество перевозок, транспортный цикл и продолжительность эффективной работы транспортного средства. Продолжительность смены составляет 8 часов.
Задача
Масса перевозимого груза составляет 12 тонн. Грузоперевозки осуществляются робокаром от пункта отправления к пункту назначения на расстояние 75 метров со средней скоростью 48 м/мин. маятниковым методом. Продолжительность загрузки составляет 6,5 мин., разгрузки 3,5 мин Грузоподъемность робокара составляет 280 кг, коэффициент его загрузки - 0,86. Плановые простои на осмотр и зарядку составляют 7% времени. Определить число робокаров и количество перевозок, транспортный цикл и продолжительность эффективной работы транспортного средства. Продолжительность смены составляет 7,85 часов.

Масса перевозимого груза составляет 18 тонн. Грузоперевозки осуществляются робокаром от пункта отправления к пункту назначения на расстояние 75 метров со средней скоростью 48 м/мин. маят-

Задача _____.

никовым методом. Продолжительность загрузки составляет 6,5 мин., разгрузки 3,5 мин.. Грузоподъемность робокара составляет 280 кг, коэффициент его загрузки - 0,86. Плановые простои на осмотр и зарядку составляют 7% времени. Определить число робокаров и количество перевозок, транспортный цикл и продолжительность эффективной работы транспортного средства. Продолжительность смены составляет 7,85 часов.

Задача	
эадача	٠

Масса перевозимого груза составляет 25 тонн. Грузоперевозки осуществляются робокаром от пункта отправления к 8 пунктам назначения со средней скоростью 40 м/мин. по кольцевому маршруту общей протяженностью 220 метров. Продолжительность загрузки составляет 10 мин., каждой разгрузки 3 мин. Грузоподъемность робокара составляет 250 кг, коэффициент его загрузки - 0,92. Плановые простои на осмотр и зарядкку составляют 7% времени. Определить число робокаров и количество перевозок, транспортный цикл и продолжительность эффективной работы робокара. Продолжительность смены составляет 8 часов.

Задача	
Эадача	٠

Масса перевозимого груза составляет 16 тонн. Грузоперевозки осуществляются робокаром от пункта отправления к 6 пунктам назначения со средней скоростью 50 м/мин. по кольцевому маршруту общей протяженностью 340 метров. Продолжительность загрузки составляет 12 мин., каждой разгрузки 4 мин. Грузоподъемность робокара составляет 400 кг, коэффициент его загрузки - 0,86. Плановые простои на осмотр и зарядкку составляют 8% времени. Определить число робокаров и количество перевозок, транспортный цикл и продолжительность эффективной работы робокара. Продолжительность смены составляет 8 часов.

Задача	

Масса перевозимого груза составляет 18 тонн. Грузоперевозки осуществляются робокаром от пункта отправления к 9 пунктам назначения со средней скоростью 35 м/мин. по кольцевому маршруту общей протяженностью 440 метров. Продолжительность загрузки составляет 9 мин., каждой разгрузки 2,5 мин. Грузоподъемность робокара составляет 450 кг, коэффициент его загрузки - 0,8. Плановые простои на осмотр и зарядкку составляют 10% времени. Определить число робокаров и количество перевозок, транспортный цикл и продолжительность эффективной работы робокара. Продолжительность смены составляет 8 часов.

Задача .

Масса перевозимого груза составляет 12 тонн. Грузоперевозки осуществляются робокаром от пункта отправления к 5 пунктам назначения со средней скоростью 42 м/мин. по кольцевому маршруту общей протяженностью 280 метров. Продолжительность загрузки составляет 8,5 мин., каждой разгрузки 3,2 мин. Грузоподъемность робокара составляет 460 кг, коэффициент его загрузки - 0,9. Плановые простои на осмотр и зарядкку составляют 8% времени. Определить число робокаров и количество перевозок, транспортный цикл, продолжительность эффективной работы робокара. Продолжительность смены составляет 8 часов.

Задача	
эадача	

Масса перевозимого груза составляет 15 тонн. Грузоперевозки осуществляются робокаром от пункта отправления к 7 пунктам назначения со средней скоростью 45 м/мин. по кольцевому маршруту общей протяженностью 180 метров. Продолжительность загрузки составляет 10 мин., каждой разгрузки 3 мин. Грузоподъемность робокара составляет 350 кг, коэффициент его загрузки - 0,84. Плановые простои на осмотр и зарядкку составляют 12% времени. Определить число робокаров и количество перевозок, транспортный цикл и продолжительность эффективной работы робокара. Продолжительность смены составляет 8 часов.

Задача	

Масса перевозимого груза составляет 8 тонн. Грузоперевозки осуществляются робокаром от пункта отправления к 6 пунктам назначения со средней скоростью 40 м/мин. по кольцевому маршруту общей протяженностью 220 метров. Продолжительность загрузки составляет 9,5 мин., каждой разгрузки 3,5 мин. Грузоподъемность робокара составляет 420 кг, коэффициент его загрузки - 0,9. Плановые простои на осмотр и зарядкку составляют 9% времени. Определить число робокаров и количество перевозок, транспортный цикл и продолжительность эффективной работы робокара. Продолжительность смены составляет 8 часов.

Задача	
эадача	

Определить длину конвейерной ленты, если на линии установлено 5 единиц оборудования, расстояние между оборудованием составляет $0.9\,$ м, а от крайних единиц оборудования до осей барабана расстояние составляет $0.75\,$ м. Конвейер проходит по длине оборудования, которое имеет следующие длины: $1\,$ станок $-3.75\,$ м, $2\,$ станок $-2.95\,$ м, $3\,$ станок $-3.15\,$ м, $4\,$ станок $-1.15\,$ м, $5\,$ станок $-1.02\,$ м.

Определить длину конвейерной ленты, если на линии установлено 5 единиц оборудования, расстояние между оборудованием составляет $0.8\,\mathrm{m}$, а от крайних единиц оборудования до осей барабана расстояние составляет $1.5\,\mathrm{m}$. Конвейер проходит по длине оборудования, которое имеет следующие длины: $1\,\mathrm{ctahok} - 2.75\,\mathrm{m}$, $2\,\mathrm{ctahok} - 1.95\,\mathrm{m}$, $3\,\mathrm{ctahok} - 2.15\,\mathrm{m}$, $4\,\mathrm{ctahok} - 1.05\,\mathrm{m}$, $5\,\mathrm{ctahok} - 2.24\,\mathrm{m}$.

Определить длину конвейерной ленты, если на линии установлено 5 единиц оборудования, расстояние между оборудованием составляет 1,2 м, а от крайних единиц оборудования до осей барабана расстояние составляет 0,75 м. Конвейер проходит по длине оборудования, которое имеет следующие длины: 1 станок -2,5 м, 2 станок -1,7 м, 3 станок -3,04 м, 4 станок -2,2 м, 5 станок -1,4м.

-	адача	
. 1	алача	

Определить длину конвейерной ленты, если на линии установлено 5 единиц оборудования, расстояние между оборудованием составляет 1,2 м, а от крайних единиц оборудования до осей барабана расстояние составляет 0,75 м. Конвейер проходит по длине оборудования, которое имеет следующие длины: 1 станок -3,75 м, 2 станок -2,95 м, 3 станок -3,15 м, 4 станок -1,15 м, 5 станок -1,02 м.

Задача .

Определить длину конвейерной ленты, если на линии установлено 5 единиц оборудования, расстояние между оборудованием составляет $0.8\,$ м, а от крайних единиц оборудования до осей барабана расстояние составляет $1.25\,$ м. Конвейер проходит по длине оборудования, которое имеет следующие длины: 1 станок -1.75 м, 2 станок -0.95 м, 3 станок -1.68 м, 4 станок -2.05 м, 5 станок -2.75 м.

n	
Капаца	
Задача	

Определить длину конвейерной ленты, если на линии установлено 5 единиц оборудования, расстояние между оборудованием составляет $0.75\,$ м, а от крайних единиц оборудования до осей барабана расстояние составляет $1.1\,$ м. Конвейер проходит по длине оборудования, которое имеет следующие длины: 1 станок -2.04 м, 2 станок -2.04 м, 3 станок -2.15 м, 4 станок -1.6 м, 5 станок -2.2 м.

Задача
Определить длину конвейерной ленты, если на линии установлено 5 единиц оборудования, расстояние между оборудованием составляет 0.95 м, а от крайних единиц оборудования до осей барабана расстояние составляет 1.15 м. Конвейер проходит по длине оборудования, которое имеет следующие длины: 1 станок -3.75 м, 2 станок -2.95 м, 3 станок -3.15 м, 4 станок -1.15 м, 5 станок -1.02 м.
Задача
Определить длину конвейерной ленты, если на линии установлено 5 станков, расстояние между станками составляет 1,4 м, а от крайних станков до осей барабана расстояние составляет 1,2 м. Конвейер проходит по длине станков. Станки имеют следующие длины: 1 станок $-2,5$ м, 2 станок $-1,95$ м, 3 станок $-2,15$ м, 4 станок $-3,15$ м, 5 станок $-2,8$ м.
Задача
Определить длину конвейерной ленты, если на линии установлено 5 станков, расстояние между станками составляет 1,5 м, а от крайних станков до осей барабана расстояние составляет 1,4 м. Конвейер проходит по длине станков. Станки имеют следующие длины: 1 станок

Задача _____ .

-3.05 m, 2 ctahok -2.95 m, 3 ctahok -3.15 m, 4 ctahok -1.15 m, 5 ctahok -1.02 m.

Рассчитать параметры карманчикового механизма ориентации цилиндрического бункера с расположением карманов по хорде для цилиндрических деталей диаметром d=12 мм и длиной l=32 мм при условии, что 4,5>l/d>2,5. Коэффициент вероятности захвата (заполнения карманов) $K_{\rm B3}=0,6$.. Рабочий диск совершает 2,5 об./мин.

Задача ______.

Рассчитать параметры карманчикового механизма ориентации цилиндрического бункера с расположением карманов по хорде для цилиндрических деталей диаметром d=8 мм и длиной l=22 мм при условии, что 4.5>l/d>2.5. Коэффициент вероятности захвата (заполнения карманов) $K_{\rm B3}=0.5$. Рабочий диск совершает 3 об./мин.

Задача ______.

Рассчитать параметры карманчикового механизма ориентации цилиндрического бункера с расположением карманов по хорде для цилиндрических деталей диаметром d=10 мм и длиной l=26 мм при условии, что 4.5>l/d>2.5. Коэффициент вероятности захвата (заполнения карманов) $K_{\rm B3}=0.75$. Рабочий диск совершает 3.5 об./мин.

Задача ______.

Рассчитать параметры карманчикового механизма ориентации цилиндрического бункера с расположением карманов по хорде для цилиндрических деталей диаметром d=14 мм и длиной l=38 мм при условии, что 4,5>l/d>2,5. Коэффициент вероятности захвата (заполнения карманов) $K_{\rm B3}=0,7$. Рабочий диск совершает 2,5 об./мин.

3. 4. Вопросы к зачёту.

- 1. Направления развития автоматизации машиностроительного производства.
- 2. Основные понятия и определения.
- 3. Тенденции развития автоматизации машиностроительного производства.

- 4. Механизация производства и ее виды.
- 5. Понятие об автоматизации производства Виды автоматизации производства.
- 6. Классификация производств и оборудования в зависимости от степени автоматизации.
- 7. Ступени автоматизации производственных процессов.
- 8. Этапы автоматизации производственных процессов.
- 9. Автоматизация различных типов производств. Типы производств.
- 10. Гибкая и жесткая автоматизация.
- 11. Систематизация оборудования по степени гибкости. Критерии систематизации.
- 12. Гибкие производственные системы.
- 13. Гибкие автоматизированные производства.
- 14. Классификация гибких производственных систем.
- 15. Обобщённая структурная схема ГАП.
- 16. Автоматизация загрузочных операций. Автоматизация и механизация загрузки и разгрузки.
- 17. Классификация изделий по отношению к процессу загрузки. Классификация штучных заготовок по отношению к процессу автоматической загрузки.
- 18. Автоматизация загрузки штучных заготовок. Классификация загрузочных устройств в зависимости от степени автоматизации.
- 19. Автоматизация загрузки штучных заготовок. Функции загрузочных устройств.
- 20. Загрузочные устройства в условиях различных типов производств. Виды и группы загрузочно-разгрузочных устройств.
- 21. Магазинные загрузочные устройства. Магазины.
- 22. Бункерные загрузочные устройства. Бункерно-магазинные загрузочные устройства.
- 23. Бункерные загрузочные устройства. Основные виды бункеров.
- 24. Вибробункерные загрузочные устройства и принцип их функционирования.
- 25. Автоматический контроль. Виды контроля по формам воздействия на объект. Активный автоматический контроль.
- 26. Методы активного автоматического контроля.
- 27. Способы активного автоматического контроля.
- 28. Контактные способы активного автоматического контроля.
- 29. Классификация устройств активного автоматического контроля по функциональному назначению: устройства, осуществляющие контроль в процессе обработки; устройства входного контроля; устройства, осуществляющие контроль и подналадку.
- 30. Измерительные средства автоматизации. Датчики. Классификация датчиков.
- 31. Датчики. Основные характеристики датчиков.
- 32. Датчики. Классификация датчиков.
- 33. Основные сведения о промышленных роботах. Манипуляторы и автооператоры. Промышленные роботы. Роль, понятие и назначение промышленных роботов.
- 34. Разновидности ПР.
- 35. Классификация и индексация промышленных роботов.
- 36. Захватные устройства ПР. Классификация захватных устройств промышленных роботов.
- 37. Классификация промышленных роботов по числу степеней подвижности.
- 38. Системы управления ПР и способы их программирования.
- 39. Классификация систем управления ПР.
- 40. Автоматизированные транспортно-складские системы (АТСС). Функции АТСС.
- 41. Состав автоматизированных транспортно-складских систем. Виды транспортных устройств и складов.

ПЕРЕЧЕНЬ ИЗМЕНЕНИЙ

2.	Перечень изменении в ФОС в для реализации в учеоном году
	Изменения в ФОС обсуждены и одобрены на заседании кафедры
	Протокол от «» 201 г. №
	Изменения в ФОС обсуждены и одобрены на заседании кафедры
	Протокол от «» 201 г. №