ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Приднестровский государственный университет

имени Т.Г. Шевченко»

Естественно-географический факультет

Кафедра «Техносферная безопасность»

Декап ЕГФ Филипенко С.И. К.б.не 2020 г.

РАБОЧАЯ ПРОГРАММА

На 2020/2021 учебный год (год набора 2018)

Учебной дисциплины *Б1.Б.21 «ГИДРОГАЗОДИНАМИКА»*

по направлению 20.03.01 Техносферная безопасность

по профилю Пожарная безопасность

Квалификация выпускника:

Бакалавр

Форма обучения:

заочная

Тирасполь 2020

Рабочая программа дисциплины «*Гидрогазодинамика*» /составитель Е.Д. Жужа/ – Тирасполь, 2020 г. – 14 с.

Рабочая программа предназначена ДЛЯ преподавания дисциплины «Гидрогазодинамика», которая дисциплиной является федеральных государственных стандартов первого уровня образования высшего бакалавриата.

Рабочая программа составлена с учетом Федерального Государственного образовательного стандарта высшего образования по направлению подготовки 20.03.01 «Техносферная безопасность», утвержденного приказом Минобрнауки РФ № 246 от 21.03.2016 г.

Составитель

/Е.Д. Жужа, доцент/

1. Цели и задачи освоения дисциплины

Цель изучения дисциплины – формирование у студентов способности самостоятельно производить гидравлические расчеты инженерных систем и изучение элементов гидравлических систем, также методов гидрогазодинамического эксперимента и приобретение практических навыков использования основных уравнений механики жидкости и газа для расчета характеристик изотермических гидродинамических И неизотермических явлений с однофазными и двухфазными средами.

Основные задачи дисциплины:

- изучение основных физических свойств, общих законов и уравнений статики и динамики жидкостей и газов;
- изучение напряжений и сил, действующих в жидкостях и газах, с учетом их основных физических свойств, уравнений сохранения массы, количества движения и энергии;
- уметь применять уравнения и справочную литературу для расчета различных задач взаимодействия и между твердым телом и движущейся средой;
- уметь рассчитывать газодинамические параметры в различных точках движущейся среды и на поверхности обтекаемого тела;
- уметь анализировать влияние начальных и конечных параметров и формы обтекаемой поверхности на эффективность работы элементов энергетических установок;
- овладение основами физического и математического моделирования исследованных явлений и процессов, расчетами характеристик по типовым методикам.

2. Место дисциплины в структуре ООП ВО

Дисциплина Б1.Б.21 «Гидрогазодинамика» включена в базовую часть учебного плана ООП: 6 семестр 3 курса по направлению подготовки 20.03.01 «Техносферная безопасность» (квалификация/степень «бакалавр»).

Дисциплина «Гидрогазодинамика» является специальной дисциплиной, как наука, входящая в цикл механических дисциплин, изучающая законы равновесия и движения жидких и газообразных тел и применение этих законов для решения технических задач. Базируется на высшей математике (теория поля, дифференциальные уравнения), физике (механика, свойства жидкостей и газов), теоретической механике.

Для освоения дисциплины необходимо знать: основы дифференциального и интегрального исчисления, основные законы физики, основы информатики.

3. Требования к результатам освоения дисциплины:

Изучение дисциплины направлено на формирование следующих компетенций: ОК-10, 11; ПК-22; ОПК-1.

Код	Формулировка компетенции
компетенции	
OK-10	способность к познавательной деятельности;
ОК-11	способность к абстрактному и критическому мышлению,
	исследованию окружающей среды для выявления ее
	возможностей и ресурсов, способность к принятию
	нестандартных решений и разрешению проблемных
	ситуаций;
ПК-22	способность использовать законы и методы математики,
	естественных, гуманитарных и экономических наук при
	решении профессиональных задач;
ОПК-1	способность учитывать современные тенденции развития
	техники и технологий в области обеспечения
	техносферной безопасности, измерительной и
	вычислительной техники, информационных технологий в
	своей профессиональной деятельности.

В результате освоения дисциплины студент должен:

3.1. Знать:

- основные законы гидромеханики;
- физические свойства жидкостей и газов;
- общие законы и уравнения статики, кинематики и динамики жидкостей и газов;
- особенности физического и математического моделирования ламинарных и турбулентных течений идеальной и реальной несжимаемой и сжимаемой жидкостей;

3.2. Уметь:

- решать теоретические задачи, используя основные законы гидромеханики;
- проводить гидромеханические расчеты аппаратов и процессов в биосфере;

3.3. Владеть:

методами теоретического и экспериментального исследования в гидромеханике.

4. Структура и содержание дисциплины

Гидрогазодинамика — область науки и техники, в которой изучаются законы движения жидкостей и газов при их взаимодействии с обтекаемыми твердыми телами или ограничивающими поверхностями или между самими жидкостями и газами и на их основе разрабатываются методологические основы и принципы проведения расчетов для решения различных прикладных задач. Для понимания рабочих процессов, оценки их с точки зрения безопасности жизнедеятельности или защиты в чрезвычайных ситуациях необходимо знать и уметь применять для решения разнообразных научнотехнических задач законы движения жидкостей и газов. Гидромеханика. Газовая динамика.

4.1. Распределение трудоемкости в з.е./часах по видам аудиторной и самостоятельной работы студентов по семестрам

			Количеств	о часов				
	Tavyzoov		В том числе					
Семестр	Трудоем - кость, з.е./часы	Аудиторных				Самост.	промеж. контроля	
		Всего	Лекций	Лаб. раб.	Практич. занятий	работы		
6	3/108	10	6	2	2	94	Зачет	
Итого:	3/108	10	6	2	2	94		

4.2. Распределение видов учебной работы и их трудоемкости по разделам дисциплины

№ раз-	Семестр	Наименование разделов	Всего	Аудиторная работа Л ПЗ ЛР		Внеауд. Работа (СР)	
дела			Количество часов)B
1	6	Гидромеханика.	51	4	2	2	43
2	6	Газовая динамика.	53	2			51
		Зачет	4				
Итого)		108	6	2	2	94

4.3. Тематический план по видам учебной деятельности

Лекции

№ п/п	Номер раздела дисципл.	Объем часов	Тема лекции	Учебно- наглядн ые пособия
1	1	2	Тема 1. Основные физические свойства жидкостей и газов. Основы гидростатики и кинематики.	Видео
2	1	2	Тема 2. Динамика вязкой и невязкой жидкости. Гидравлические сопротивления. Истечение жидкостей из отверстий и насадков.	
3	2	2	Тема 3. Статика газов. Законы движения газа.	
Всег	0	6		

Практические (семинарские) занятия

№ п/п	Номер раздела дисципл.	Объем часов	Тема практического занятия	Учебно- наглядные пособия
1	1	2	Уравнение неразрывности потока. Уравнение Бернулли для жидкости.	Раздат. материал
Ито	го	2		

Лабораторные работы

№ п/п	Номер раздела дисципл.	Объем часов	Тема лабораторного занятия	Учебно- наглядные пособия
1	1	1	1. Определение кинематической вязкости жидкости.	Вискозим. Освальда.
2	1	1	2. Определение плотности жидкости с помощью пикнометра.	Пикномет р, весы.
Ито	Γ0	2		

Самостоятельная работа студента

Разделы	Тема и вид СРС	Объем часов
	Тема 1. Основные физические свойства жидкостей и газов (конспектирование).	8
	Тема 2. Основы гидростатики и кинематики (конспектирование и подготовка к практическим и лабораторным работам).	8
	Тема 3. Динамика вязкой и невязкой жидкости (углубленное изучение материала, подготовка к защите лабораторных работ).	11
1	Тема 4. Гидравлические сопротивления. Истечение жидкостей из отверстий и насадков (работа с конспектом).	8
	Тема 5. Русловая гидравлика. Водосливы. Основы фильтрации (конспектирование и самостоятельное углубленное изучение).	8
	Тема 6. Гидравлические машины и гидропривод (подготовка к контрольной работе).	4
	Тема 7. Законы движения газа (работа с конспектом).	12
2	Тема 8. Волны давления в газовом потоке (конспектирование).	10
	Тема 9. Теория пограничного слоя (реферат).	15
	Зачет. Подготовка к зачету.	10
Итого:		94

5. Курсовые проекты не предусмотрены

6. Образовательные технологии

Семестр	Вид	Используемые интерактивные	
	занятия	образовательные технологии	часов
	Л	Лекция-беседа. Консультация.	1
6	ПР	Анализ конкретных ситуаций, дискуссия.	0,5
	ЛР	Технологии активного обучения.	0,5
Итого:			2

7. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебнометодическое обеспечение самостоятельной работы студентов

Программой дисциплины предусмотрены следующие виды текущего контроля: устный контроль, письменные контрольные работы, выполнение тестовых заданий, защита лабораторных работ, рефератов. Промежуточная аттестация проводится в форме зачета в 6 семестре.

Примерный перечень вопросов к зачету по дисциплине

- 1. Как определяются плотность, модуль упругости, коэффициент температурного расширения жидкости?
- 2. Что такое динамическая и кинематическая вязкость? Как они определяются?
- 3. Что такое давление насыщенного пара жидкости? От чего оно зависит?
- 4. Чем отличается идеальная жидкость от реальной?
- 5. Что такое гидростатическое давление, и какими свойствами оно обладает?
- 6. Напишите основное уравнение гидростатики в двух вариантах:
- а) все члены уравнения имеют размерность напора;
- б) все члены уравнения имеют размерность давления. Объясните энергетический смысл этих уравнений.
- 7. Что такое абсолютный и относительный покой жидкости?

- 8. Объясните вид свободной поверхности жидкости:
- а) в цистерне, движущейся по горизонтальной поверхности равноускоренно (при положительном и отрицательном ускорениях);
- б) в сосуде, вращающемся вокруг вертикальной оси с постоянной угловой скоростью.
- 9. Объясните понятия абсолютного, избыточного давлений, вакуума. Как измерить избыточное давление и вакуум?
- 10. Как определить силу давления жидкости на плоскую поверхность и центр давления?
- 11. Как определить силу давления жидкости на криволинейную поверхность и линию действия этой силы?
- 12. Сформулируйте закон Архимеда.
- 13. Назовите виды движения жидкости.
- 14. В чем заключается различие методов Лагранжа и Эйлера в изучении движения жидкости?
- 15. Что такое линия тока, элементарная струйка, поток жидкости?
- 16. Какие параметры характеризуют поток жидкости? Как они определяются?
- 17. Что представляют собой уравнения неразрывности потока для сжимаемой и несжимаемой жидкостей?
- 18. Привести уравнение Бернулли для потока вязкой несжимаемой жидкости и объяснить физический смысл его членов.
- 19. Дать определение пьезометрического уклона.
- 20. Какова структура потока при ламинарном и турбулентном режимах движения?
- 21. Какие физические величины влияют на режим движения жидкости?
- 22. Как определить критическое число Рейнольдса при движении жидкости в некруглых трубах?
- 23. Как взаимосвязаны касательные напряжения на стенках трубы с гидравлическим уклоном и радиусом?

- 24. Объяснить характер распределения касательных напряжений и скоростей в сечении ламинарного потока.
- 25. От каких параметров зависит гидравлический коэффициент трения при ламинарном течении жидкости?
- 26. В чем различие понятий осредненной (местной) и средней скоростей в сечении турбулентного потока?
- 27. Как распределяются скорости в сечении трубы при турбулентном течении жидкости?
- 28. Почему одна и та же труба может быть в одном случае гидравлически гладкой, а в другом гидравлически шероховатой?
- 29. Дайте определение местного сопротивления.
- 30. Как вычисляются потери напора и давления на местных сопротивлениях?
- 31. От чего зависят значения коэффициентов местных сопротивлений: для внезапного и плавного сужений и расширений, резкого и плавного поворотов?
- 32. Какие отверстия считаются малыми?
- 33. Как взаимосвязаны коэффициенты сжатия, скорости, расхода и местного сопротивления малого отверстия? Каков физический смысл этих коэффициентов?
- 34. От чего зависит расход жидкости через малое отверстие в тонкой стенке?
- 35. Что называют насадком? Какие виды насадков вы знаете, и каково их практическое применение?
- 36. Почему при установке насадка увеличивается расход по сравнению с истечением через отверстие одинакового сечения?
- 37. Дайте определение затопленной, незатопленной, свободной струй.
- 38. Как классифицируются трубопроводы?
- 39. В чем различие расчетов коротких и длинных трубопроводов?
- 40. От каких факторов зависит сопротивление трубопроводов?
- 41. Как определить общее сопротивление трубопровода при последовательном и параллельном соединениях участков труб?
- 42. Что такое фаза гидравлического удара?

- 43. Как определить повышение давления при гидроударе?
- 44. От чего зависит скорость распространения ударной волны в жидкости?
- 45. Какие меры принимают для понижения давления при гидроударах?
- 46. В каких устройствах применяется полезное явление гидроудара?
- 47. Какие виды движения грунтовых вод различают?
- 48. Классификация свойств грунтов, влияющих на фильтрацию.
- 49. Как формулируется линейный закон фильтрации?
- 50. Какие силы действуют на обтекаемое жидкостью тело?
- 51. Ламинарный пограничный слой.
- 52. Турбулентный пограничный слой.
- 53. Как происходит отрыв пограничного слоя?

8. Учебно-методическое и информационное обеспечение дисциплины

8.1. Основная литература:

- 1. Кудинов В.А., Карташов Э.М. Гидравлика [Текст]: учебное пособие для вузов / А.В. Кудинов, Э.М. Кудинов. М.: Высшая школа, 2006. 186 с.
- 2. Петров А.Г. Аналитическая гидродинамика [Текст]: учеб. пособие / А.Г. Петров, 2010. 519 с. ЭБС. Университетская библиотека online.
- 3. Малашкина В.А. Гидравлика: учеб. пособие 2-е изд. стереотип. М.: Моск. Горный ун-т, 2012. 103 с. ЭБС. Университетская библиотека online.

8.2. Дополнительная литература:

- 1. Лапшев Н.Н. Гидравлика [Текст]: учеб.: рек. УМО / Н.Н. Лапшев, 2010. 270 с.
- 2. Метревели В.Н. Сборник задач по курсу гидравлики с решениями [Текст]: учеб. пособие: доп. Мин. обр. РФ / В.Н. Метревели, 2008. 192 с.
- 3. Гидрогазодинамика. Часть І. Гидравлика: учеб. пособие / АмГУ, ЭФ: М.Ф. Гриценко и др. Благовещенск: Изд-во Амурск. гос. ун-та, 2008. 75 с.
- 4. Чугаев Р.Р. Гидравлика [Текст]: Техническая механика жидкости: учеб. / Р.Р. Чугаев, 2008. 672 с.

8.3. Программное обеспечение и Интернет-ресурсы:

- 1. Официальный сайт научно-технической библиотеки СГГА. Режим доступа: http://lib.ssga.ru/. загл. с экрана.
- 2. www.spbgunpt.narod.ru

8.4. Методические указания и материалы по видам занятий

Жужа Е.Д. Техносферная безопасность. Лабораторный практикум. ПГУ им. Т.Г. Шевченко. Каф. «Техносферная безопасность». – Тирасполь: 2017. – 47 с.

9. Материально-техническое обеспечение дисциплины

Для обеспечения данной дисциплины необходимы:

- оборудованные кабинеты и аудитории;
- технические средства обучения: диапроектор, мультимедийный портативный переносной проектор, мультимедийное обеспечение, настенный экран;
- учебные и методические пособия: учебники, компьютерные программы, учебно-методические пособия для самостоятельной работы.

10. Методические рекомендации по организации изучения дисциплины:

Самостоятельная работа заключается в изучении отдельных тем курса по заданию преподавателя по рекомендуемой им учебной литературе, в выполнении домашнего задания, в проведении реферативного исследования, при подготовке к семинарам, к практическим заданиям, к зачету.

Рабочая программа по дисциплине «Гидрогазодинамика» составлена в соответствии с требованиями Федерального Государственного образовательного стандарта ВО по направлению 20.03.01 «Техносферная безопасность» и учебного плана по профилю подготовки «Пожарная безопасность».

11. Технологическая карта дисциплины

Курс 3 группа $E\Gamma 18BP62TE2$ семестр 6

Преподаватель-лектор Е.Д. Жужа

Преподаватель, ведущий практические занятия Е.Д. Жужа

Bleech-

Кафедра «Техносферная безопасность»

Составитель

/Е.Д. Жужа, доцент/

Зав. кафедрой

/В.В. Ени, профессор/