Государственное образовательное учреждение высшего образования «ПРИДНЕСТРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени Т.Г. Шевченко»

филиал ПГУ им. Т.Г. Шевченко в г. Рыбница

Кафедра «Автоматизации технологических процессов и производств»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине

Б1.Б19 «Средства автоматизации и управления»

Основной образовательной программы высшего образования по направлению подготовки 2.15.03.04 «Автоматизация технологических процессов и производств»

профиль «Автоматизация технологических процессов и производств» квалификация выпускника «бакалавр» форма обучения: очная, заочная

Разработчик: ст. преподаватель

П.С. Цвинкайло

Обсужден на заседании кафедры АТПиП

<u>« 22 » 09 2020 г.</u>

Протокол № _2__

Зав. кафедрой АТПиП доцент

В.Е. Федоров

ПАСПОРТ

фонда оценочных средств этапов формирования компетенций по дисциплине

«Средства автоматизации и управления»

- 1. В результате изучения дисциплины «Средства автоматизации и управления» обучающийся должен:
 - 1.1 Знать:
- структуру и устройство основных типовых технических средств автоматизации и управления;
- состав и структуру, принципы типизации, унификации, построения и содержании агрегатных комплексов технических средств (КТС);
- основные аппаратные и программные средства автоматизированных систем управления (АСУ)на базе типовых КТС.
 - 1.2 Уметь:
 - читать и анализировать схемы автоматики;
- составлять структурные схемы систем по заданному математическому описанию, выполнять проект технического обеспечения САиУ на базе типовых КТС для конкретной поставленной задачи;
- осуществлять выбор комплекса технических средств для реализации АСУ И АСУ ТП;
- разрабатывать алгоритмы контроля и управления конкретными объектами отрасли;
 - решать типовые задачи по основным разделам курса.
 - 1.3 Владеть:
- навыками анализа технологических процессов, как объекта управления и выбора функциональных схем их автоматизации.
- навыками самостоятельного формирования технического задания и решения нетиповых задач технического обеспечения СА и У.
- навыками использования возможностей современных компьютеров
 и информационных технологий при аналитическом и численном
 исследования математико-механических моделей технических систем.
- навыками письменного аргументированного изложения собственной точки зрения;
- навыками практического анализа логики различного рода рассуждений;
- критериями выделения основных параметров, влияющих на устойчивую работу установок и агрегатов;

– опытом работы и использования научно-технической информации, Internet-ресурсов, баз данных и каталогов, электронных журналов и патентов, поисковых ресурсов и др. в области высокотехнологического оборудования.

2. Программа оценивания контролируемой компетенции:

Текущ ая аттеста ция	Контролируемые модули, разделы (темы) дисциплины и их наименование *	Код контролируемо й компетенции (или ее части)	Наименование оценочного средства**
1	Современный уровень технических средств автоматизации и управления.	ОК-5, ОПК-4,	Тесты №1-2
2	Технические средства получения информации о состоянии объекта управления.	ОК-5, ПК-18	Контрольная работа № 1-2
3	Состав технических средств автоматизации (TCA) для автоматического регулирования и логического управления	ОК-5, ПК-8	Тесты №3-4
Промежу	уточная аттестация	Код контролируемо й компетенции (или ее части)	Наименование оценочного средства**
	1	ОК-5, ОПК-4, ПК-8, ПК-18,	Зачёт с оценкой

^{*} Выбор контролируемых единиц (модули, разделы, темы рабочей программы дисциплины) для текущей аттестации (при наличии) преподаватель определяет самостоятельно, каждый сопровождается комплектом оценочных средств.

Государственное образовательное учреждение высшего образования «ПРИДНЕСТРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени Т.Г. Шевченко»

филиал ПГУ им. Т.Г. Шевченко в г. Рыбница

Кафедра «Автоматизации технологических процессов и производств»

Тест

по дисциплине «Средства автоматизации и управления»

Тест 1.

- 1. Сколько существует этапов развития средств автоматизации?
 - 1.4
 - 2.5
 - 3.6
- 2. Когда начинается этап автоматизированных систем управления технологическими процессами (АСУТП)?
 - 1. С появлением управляющих вычислительных машин.
 - 2. С расширением масштабов производства.
 - 3. С появлением автоматических регуляторов.
- 3. При помощи каких методов решается задача уменьшения функционального и конструктивного многообразия технических средств управления?
 - 1. Методов стандартизации.
 - 2. Методов безотказности
 - 3. Методов ремонтопригодности.
- 4. Что является наиболее развитой ветвью средств автоматизации?
 - 1. Электрическая.
 - 2. Пневматическая
 - 3. Гидравлическая.
- 5. Какой вид сигналов представляет собой сложную последовательность импульсов?
 - 1. Импульсный
 - 2. Кодовый.

3. Аналоговый

6. Импульсный сигнал характерен:

- 1. представлением информации только в дискретные моменты времени
- 2. текущими изменениями какого—либо физического параметра—носителя (например, мгновенными значениями электрического напряжения или тока).
- 3. последовательностью импульсов, используемую для передачи цифровой информации

7. Аналоговый сигнал характеризуется:

- 1. текущими изменениями какого—либо физического параметра—носителя (например, мгновенными значениями электрического напряжения или тока).
- 2. представлением информации только в дискретные моменты времени
- 3. последовательностью импульсов, используемую для передачи цифровой информации

8. Блок - это:

- 1. набор технических требований,
- 2. конструктивное отдельное устройство или механизм, выполняющее одну или несколько функциональных операций по преобразованию информации
- 3. конструктивное сборное устройство, выполняющее одну или несколько функциональных операций по преобразованию информации

9. Модуль —это:

- 1. конструктивное сборное устройство, выполняющее одну или несколько функциональных операций по преобразованию информации
- 2. устройство для преобразования управляющей информации в механическое перемещение с располагаемой мощностью, достаточной для воздействия на объект управления
- **3.** унифицированный узел, выполняющий элементарную типовую операцию в составе блока или прибора

10. Исполнительный механизм (ИМ)—это:

1. конструктивное сборное устройство, выполняющее одну или несколько функциональных операций по преобразованию информации

- 2. устройство для преобразования управляющей информации в механическое перемещение с располагаемой мощностью, достаточной для воздействия на объект управления
- 3. унифицированный узел, выполняющий элементарную типовую операцию в составе блока или прибора
- 11. Расположите в порядке возрастания создание систем управления в соответствии с принципом агрегатирования: 1. Прибор, 2. Модуль, 3. Блок, 4. Механизм
 - 1. 2, 3, 4, 1
 - 2. 2, 4, 3, 1
 - 3. 2, 1, 3, 4

12. Применение блочно—модульного принципа позволяет:

- 1. проводить широкую специализацию и кооперирование предприятий в рамках отрасли, производящей средства автоматизации,
- 2. ведет к повышению ремонтопригодности и увеличению коэффициентов использования этих средств в системах управления
 - 3. все вышеперечисленное

13. Совместимость по интерфейсу это:

- 1. совместимость по параметрам и характеристикам сигналов—носителей информации, равно как и по конструктивным параметрам и характеристикам устройств коммутации.
 - 2. совместимость по стоимости
 - 3. нет правильного ответа
- 14. Какой вид оптического кабеля используют для связи на короткие расстояния?
 - 1. Одномодовые волокна.
 - 2. Многомодовые волокна
 - 3. Инфра-волокна

15. Для чего предназначены исполнительные механизмы?

- 1. для управления регулирующими органами.
- 2. для внесения изменений в работу контроллера
- 3. для сбора информации

16. Чем регулируют потоки газообразных веществ?

- 1. включением или отключением компрессорных или вентиляционных установок.
 - 2. автотрансформаторами
 - 3. редукторами.

17. Унификация— это:

- 1. сопутствующий агрегатированию метод обновления, также направленный на упорядочение и разумное сокращение состава серийно изготовляемых средств автоматизации.
- 2. сопутствующий агрегатированию метод стандартизации, также направленный на упорядочение и разумное сокращение состава серийно изготовляемых средств автоматизации.
- 3. сопутствующий агрегатированию метод стандартизации, также направленный на упорядочение и разумное расширение состава серийно изготовляемых средств автоматизации.

18. Полевое оборудование, включает в себя:

- 1. интеллектуальные средства измерения, контроля,
- 2. регулирующие отсечные и запорные клапаны,
- 3. все вышеперечисленное включая электроприводы

19. Каким приборам необходимо отдавать предпочтение при измерении температур?

- 1. Предпочтение надо отдавать измерителям, сделанным в разных сборках с чувствительным элементом и установленным непосредственно на объекте.
- 2. Предпочтение надо отдавать измерителям, сделанным в единой сборке с чувствительным элементом и установленным непосредственно на объекте
- 3. Предпочтение надо отдавать измерителям, сделанным в единой сборке с чувствительным элементом и установленным непосредственно перед объектом
- 20. Программируемые контроллеры, модули ввода вывода аналоговых и дискретных сигналов предназначены для:
 - 1. Управления технологическими процессами
 - 2. Управления финансами
 - 3. Нет правильного ответа

Ответы на тест №1

Вопрос	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ответ	3	1	1	1	2	1	1	3	3	2	1	3	1	1	1	1	2	3	2	1

Тест №2

1. Какие виды электродвигательных исполнительных механизмов малой мощности получили большее распространение?

- 1. трехфазные с короткозамкнутым или фазным ротором.
- 2. двухфазные асинхронные двигатели или двигатели постоянного тока
 - 3. с поступательным перемещением выходного штока.

2. Что понимается под выражением однооборотные электродвигательные исполнительные механизмы?

- 1. электродвигатели с углом поворота выходного вала до 360°.
- 2. электродвигатели в которых выходной вал электродвигателя может совершать большое число оборотов
 - 3. электродвигатели в которых выходной вал неподвижен

3. В чем преимущество способа управления двигателем со стороны якоря?

- **1.** он позволяет получить широкий диапазон регулирования скорости.
 - 2. он позволяет добиться плавности регулирования.
 - 3. оба вышеперечисленных варианта.

4. Из какого материала выполняют якорь электродвигателя для обеспечения демпфирования?

- 1. алюминий.
- 2. медь
- 3. сталь.

5. Каким способом может быть осуществлено реверсирование двигателя?

- 1. полупроводниковым коммутатором путем взаимного переключения начала и концов обмоток.
 - 2. изменением фазы входного напряжения.
 - 3. изменением величины входного тока

6. Нормирующие преобразователь **ОВЕН** НПТ-1.00.1.1.Ex позволяет:

- 1. унифицировать сигналы с различных датчиков температуры, привести их к единому виду токовая петля «4...20мА», а за счет встроенного барьера искрозащиты защищает датчик от аварийного попадания высокого напряжения, исключает возможность появления искры во взрывоопасной зоне
- 2. отобразить сигналы с различных датчиков температуры, привести их к единому виду токовая петля «4...20мА», а за счет встроенного барьера искрозащиты защищает датчик от аварийного

попадания высокого напряжения, исключает возможность появления искры во взрывоопасной зоне

3. унифицировать сигналы с различных датчиков давления, привести их к единому виду — токовая петля «4...20мА», а за счет встроенного таможенного барьера искрозащиты защищает датчик от аварийного попадания высокого напряжения, исключает возможность появления искры во взрывоопасной зоне

7. Измерение уровня производится:

- 1. датчиками загазованности среды
- **2.** буйковыми датчиками, ультразвуковыми датчиками, датчиками давления
 - 3. термопарами

8. Регулирующие отсечные клапаны по своему применению делятся на три группы:.

- 1. не регулирующие; отсечные в схемах блокировки; отсечные, используемые для дистанционного управления в качестве запорных органов.
 - 2. регулирующие; отсечные в схемах блокировки; прямые
- 3. регулирующие; отсечные в схемах блокировки; отсечные, используемые для дистанционного управления в качестве запорных органов
- 9. Основные типы конструкции световодов и оптических волокон:
 - 1. многомодовый и одномодовый.
 - 2. разномодовый и одномодовый
 - 3. все вышеперечисленные
- 10. По одномодовому волокну диаметр сердцевины которых находится обычно в пределах 5-10 мкм передаются:
 - **1.** один тип волн (мод)
 - 2. несколько типов мод (волн)
 - 3. статические напряжения

11. Для связи на дальние расстояние используются:

- 1. одномодовые проводники
- 2. многомодовые проводники
- 3. полупроводники:

12. Световые импульсы образуются при:

- 1. изменении кинематических характеристик
- 2. модуляции источника излучения лазера или светодиода
- 3. статических нагрузках

- 13. Станции управления технологическим процессом выполняют следующие функции:
- 1. логическая или арифметическая обработка сигналов, вывод управляющих воздействий
 - 2. расчёт себестоимости продукции
 - 3. обслуживание и ремонт аппаратуры

14. Для чего предназначены исполнительные механизмы?

- 1. для управления регулирующими органами.
- 2. для внесения изменений в работу контроллера
- 3. для сбора информации

15. Для чего служат исполнительные электромагнитные механизмы?

- 1. для преобразования электрического тока в механическое перемещение.
 - 2. для торможения электродвигателя
 - 3. для управления электродвигателем
- 16. В чем различия исполнительных электромагнитных механизмов по сравнению с обычными исполнительными механизмами?
- 1. ЭМИМ по сравнению с электродвигательными ИМ отличаются простотой конструкции и схем управления.
- 2. меньшими весом и размерами и значительно меньшей стоимостью. Кроме того, благодаря отсутствию редуктора они более надежны в эксплуатации
 - 3. оба вышеперечисленных варианта
- 17. В чем особенность нейтральных электромагнитов постоянного тока?
 - 1. они не реагируют на полярность напряжения питания.
 - 2. они позволяют добиться плавности регулирования
 - 3. они потребляют малую мощность

18. Место исполнительных механизмов в системе автоматического регулирования и управления:

- 1. Исполнительные механизмы (ИМ) являются первым звеном систем автоматического регулирования и управления
- 2. Исполнительные механизмы (ИМ) являются одними из последних звеньев систем автоматического регулирования и управления
- 3. Исполнительные механизмы (ИМ) являются промежуточным звеном систем автоматического регулирования и управления

- 19. В чем особенность соленоидных электромагнитов постоянного тока?
- 1. они имеют большой ход якоря и обладают высоким быстродействием
 - 2. они имеют поступательные движения якоря.
 - 3. они имеют небольшое движение якоря
- 20. Сравните потребление электроэнергии электромагнитами переменного и постоянного тока при одинаковых совершенных механических работах?
- 1. электромагниты переменного тока потребляют меньше электроэнергии, чем электромагниты постоянного тока.
- 2. электромагниты переменного тока потребляют больше электроэнергии, чем электромагниты постоянного тока
- 3. электромагниты переменного тока потребляют такое же количество электроэнергии, как и электромагниты постоянного тока.

Ответы на тест №2

Вопрос	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ответ	2	1	3	3	2	1	2	3	1	1	1	2	1	1	1	3	1	2	1	2

Тест №3

1. Для чего служит муфта?

- 1. для сцепления двух валов, т.е. для передачи вращающего момента с одного вала (ведущего) на другой (ведомый).
 - 2. для торможения электродвигателя.
 - 3. для изменения скорости вала двигателя

2. В чем особенность муфт релейного действия?

- 1. они могут сделать значительно меньше момента инерции.
- 2. они осуществляют жесткое сцепление валов при подаче сигнала
- 3. муфты релейного действия способны выдерживать значительные перегрузки

3. Распределённая система — управления- это:

- 1. система управления технологическим процессом, отличающаяся построением распределённой системы ввода-вывода и децентрализацией обработки данных.
- **2.** система управления технологическим процессом, отличающаяся построением распределённой системы ввода-вывода и централизацией обработки данных.
- **3.** система управления технологическим процессом, отличающаяся построением сосредоточенной системы ввода-вывода и централизацией обработки данных.
- 4. Приводит ли выход из строя одного из узлов для распределённых систем к полной остановке всей системы?
 - 1. да
 - 2. нет
 - 3. частично
 - 5. Функции, выполняемые операторской станцией:
- 1. отображение информации об управлении технологическим объектом на экране, ввод команд при помощи клавиатуры, печать отчетов о состоянии технологического объекта.
 - 2. проверка наличия сотрудников на производстве
- **3.** представление законодательной инициативы по техническому регламентированию
- 6. Программируемые контроллеры, используемые в станции управления, должны отвечать следующим требованиям:
- 1. Контроллеры должны иметь модульную структуру и набор модулей различной производительности. Они должны иметь различное число входов и выходов от 5 10 до 1000 2000. Они должны иметь в своем составе модули ввода вывода для аналоговых дискретных сигналов
- 2. Должны иметь в своем составе коммуникационные модули, позволяющие использовать различные каналы связи для обмена данными Должны работать в тяжелых производственных условиях. Рабочий диапазон температур: 40 +50 градусов Цельсия. Должны иметь низкую стоимость и иметь систему автоматизации программировании.
 - 3. Все вышеперечисленные показатели
- 7. Чем отличаются исполнительные механизмы с электромеханическими муфтами от электродвигательных?
- 1. более простой конструкцией, низкой стоимостью, высокой надежностью и долговечностью.
 - 2. более сложной конструкцией, высокой стоимостью

3. они потребляют малую мощность.

8. Программное обеспечение современной АСУТП должно состоять из следующих компонент:

- 1. Операционной системы реального времени для ПЛК (программного логического контроля). Набор карандашей и бумаги. Системы программирования и отладки прикладных программ для ПЛК Комплектов прикладных программ для ПЛК, реализующих функции для конкретной АСУТП.
- 2. Операционной системы реального времени для ПЛК (программного логического контроля). Комплекта для оказания первой медицинской помощи. Системы программирования и отладки прикладных программ для ПЛК Комплектов прикладных программ для ПЛК, реализующих функции для конкретной АСУТП.
- 3. Операционной системы реального времени для ПЛК (программного логического контроля). Системы программирования и отладки прикладных программ для ПЛК Комплектов прикладных программ для ПЛК, реализующих функции для конкретной АСУТП. Системы SCADA. Промышленные компьютеры
- 9. По принципу действия электромеханические муфты делятся на:
- 1. два основных типа: электромеханические муфты трения (ЭМТ) и электромеханические муфты скольжения (ЭМС).
- 2. три основных типа: электромеханические муфты трения (ЭМТ), электромеханические муфты скольжения (ЭМС) и электромеханические муфты вращения (ЭМВ).
- 3. четыре основных типа: электромеханические муфты трения (ЭМТ), электромеханические муфты скольжения (ЭМС), электромеханические муфты вращения (ЭМВ) и электромеханические муфты качения (ЭМК).
- 10. Системы для конфигурирования и выполнения на промышленном компьютере функций человеко-машинного интерфейса, сбора, обработки данных и супервизорного управления конкретным технологическим объектом называются:
 - 1. NANO системы.
 - **2.** SCADA системы
 - 3. системы WINDOWS

11. Исполнительный двигатель — это:

- 1. ограничение перемещения рабочего органа и фиксирование его крайние положения в схемах управления и автоматического регулирования
 - 2. источник силового воздействия на рабочий орган;
 - 3. источник получения информации

12. Конечный выключатель выполняет функции:

- 1. ограничивающие перемещения рабочего органа и фиксирующих его крайние положения в схемах управления и автоматического регулирования;
 - 2. защиты (предохранительных и переливных клапанов
 - 3. источника силового воздействия на рабочий орган

13. В АСУ пускатели, реле, золотники, клапана относятся к:

- 1. Элементам защиты
- 2. Элементам управления
- 3. Элементам контроля

14. Какие регулирующие органы используются для твердых веществ

- 1. скребковые или ленточные питатели,
- 2. биттерные питатели,
- 3. тарельчатые питатели и заслонки.

15. Программирование для непрерывных процессов — это:

- 1. язык функциональных блоков,
- 2. язык лестничных схем.
- 3. молдавский язык

16. В приводе таких регулирующих органов, как заслонки, краны, шибера применяются:

- 1. Однооборотные с углом поворота выходного вала до 360°
- 2. Многооборотные
- 3. Шаговые

17. Чем характеризуются многооборотные электродвигатели?

- 1. углом поворота выходного вала до 360°
- 2. выходной вал у них может совершать большое число оборотов и одновременно поступательно перемещать регулирующие органы
- 3. преобразованием импульсных сигналов управления в фиксированный угол поворота,

18. Какой информацией необходимо располагать для правильного выбора мощности двигателя исполнительного механизма?

- 1. Иметь данные о приводных характеристиках нагрузки или объекта регулирования.
- 2. Иметь данные об энергетических потоках в объекте управления
- 3. Иметь данные о трении в подшипниках исполнительного механизма

19. Какой способ управления электродвигателем получил широкое распространение в системах автоматического управления?

- 1. Метод широтно-импульсной модуляции.
- 2. Со стороны обмотки.
- 3. Со стороны якоря.

20. Вращательный момент в электромеханические муфты трения создается за счёт

- 1. силы трения
- 2. силы скольжения
- 3. силы тяжести

Ответы на тест №3

Вопрос	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ответ	1	2	1	2	1	3	1	3	1	2	2	1	2	1	1	1	2	1	3	1

Тест №4

1. Что называется, релейными исполнительными механизмами?

- 1. релейные элементы, выполняющие функции исполнительных механизмов.
- 2. релейные элементы, служащие для изменения скорости вала двигателя
 - 3. специальные устройства герконы.

2. Какое основное требование, предъявляют к техническому устройству с точки зрения общей системы приборов и средств автоматизации?

- 1. низкой стоимости.
- 2. стандартизации параметров, которые определяют его связи с другими устройствами.
 - 3. малой металлоемкости

3. По способу возбуждения двигатели делятся на :

1. исполнительные двигатели с электромагнитным возбуждением

- 2. исполнительные двигатели с возбуждением от постоянных магнитов
 - 3. оба варианта правильные
- 4. Определите последовательность рабочего цикла ЭМИМ состоит:1-срабатывания, 2-включенного состояния 3- возврата в исходное положение
 - 1. 1, 2, 3
 - 2. 3, 2, 1
 - 3. 2, 3, 1
- 5. Почему сигналы переменного тока редко используются для преобразования и передачи информации во внешних линиях связи?
- 1. Потому что для них трудно выполнить требование синфазности и подавить нелинейные искажения.
 - 2. Ввиду больших потерь передаваемой мощности
 - 3. Вследствие отсутствия необходимой для этого аппаратуры
- 6. По основным электромеханическим параметрам релейные исполнительные механизмы (РИМ) рекомендуется предусматривать эксплуатационные запасы. Наличие запасов позволяет:
 - 1. повысить надежность работы устройства
- 2. компенсировать неизбежные погрешности в определении режимов и условий эксплуатации.
 - 3. оба приведенных варианта
 - 7. Коэффициент запаса представляет собой:
- 1. отношение рекомендуемого эксплуатационного значения параметра к максимально допустимому значению по паспортным данным
- 2. отношение рекомендуемого эксплуатационного значения параметра к максимально допустимому значению по паспортным данным
- 3. отношение рекомендуемого эксплуатационного значения параметра к максимально допустимому значению по паспортным данным
 - 8. Из каких элементов состоит типичный световод?
 - 1. Из изолированного электропровода.
 - 2. Из сердцевины и оболочки
 - 3. Из оптоволокна
- 9. В чем особенность нейтральных электромагнитов постоянного тока?
 - 1. они не реагируют на полярность напряжения питания.
 - 2. они позволяют добиться плавности регулирования
 - 3. они потребляют малую мощность.

- 10. В чем особенность соленоидных электромагнитов постоянного тока?
- 1. они имеют большой ход якоря и обладают высоким быстродействием.
 - 2. они имеют поступательные движения якоря
 - 3. они имеют небольшое движение якоря

11. В чем особенность релейных исполнительных механизмов?

- 1. они осуществляют жесткое сцепление валов при подаче сигнала.
- 2. они представляют собой совокупность электромагнита, который выполняет роль управляющего устройства, и перемещаемой им механической нагрузки)
 - 3. они способны осуществлять управление электродвигателем

12. Какова особенность коэффициента возврата?

- 1. коэффициентом возврата связывает параметры срабатывания и отпускания.
- 2. коэффициент возврата равен отношению параметра отпускания к параметру срабатывания.
 - 3. верны оба вышеперечисленных варианта
- 13. В чем особенность нейтральных электромагнитов постоянного тока?
 - 1. они не реагируют на полярность напряжения питания.
 - 2. они позволяют добиться плавности регулирования
 - 3. они потребляют малую мощность
- 14. Для каких целей увеличивается количество обмоток на статоре?
 - 1. уменьшения пульсаций момента на валу двигателя.
- 2. для улучшения пусковых свойств и равномерности работы машины.
 - 3. верны оба вышеперечисленных варианта

15. Управление шаговым двигателем может быть:

- 1. однополярным или разнополярным,
- 2. верны все перечисленные варианты
- 3. симметричным или несимметричным
- 4. потенциальным или импульсным.
- 16. В каких механизмах применение электромеханических муфт наиболее целесообразно?

- 1. В тех механизмах, где стоимость израсходованной энергии составляет небольшую долю себестоимости продукции.
- 2. В тех механизмах, в которых повышение надежности, а, следовательно, уменьшение простоев и брака, как правило, окупает увеличение расхода энергии
- 3. В тех механизмах, в которых низкая себестоимость этих ИМ приводит к минимуму расчетных затрат
- 17. Большую зависимость скорости выходного вала от нагрузки в электроприводах это:
 - 1. Положительная характеристика
 - 2. Отрицательная характеристика
- 3. Не имеет никакого отношения к характеристикам электропривода;
- 18. Сколько бывает видов муфт с электромагнитным управлением по принципу действия?
 - 1. 1
 - 2. 2
 - 3. 3
- 19. В чем основное преимущество электромеханических муфт перед обычным управляемым электродвигателем?
 - 1. в их большем быстродействии.
 - 2. в их низкой себестоимости
 - 3. в их больших габаритах
- 20. В чем особенность соленоидных электромагнитов постоянного тока?
- 1. они имеют большой ход якоря и обладают высоким быстродействием.
 - 2. они имеют поступательные движения якоря
 - 3. они имеют небольшое движение якоря.

.

Ответы на тест №4

Вопрос	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ответ	1	2	3	1	1	3	2	2	1	1	2	3	1	3	2	1	2	2	1	1

Критерии оценки:

- оценка «отлично» выставляется студенту, если процент правильных ответов составляет 90-100%;

- оценка «хорошо» выставляется студенту, если процент правильных ответов составляет 60–89%;
- оценка «удовлетворительно» выставляется студенту, если процент правильных ответов составляет 30–59%;
- оценка «неудовлетворительно» выставляется студенту, если процент правильных ответов составляет 0–29%.

Ст. преподаватель

П.С. Цвинкайло

10 сентября 2020 г.

Государственное образовательное учреждение высшего образования «ПРИДНЕСТРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени Т.Г. Шевченко»

филиал ПГУ им. Т.Г. Шевченко в г. Рыбница

Кафедра «Автоматизации технологических процессов и производств»

Комплект заданий для контрольной работы

по дисциплине «Средства автоматизации и управления»

Контрольная работа №1

Контрольная работа посвящена изучению технических средств систем автоматизации и управления (СА и У), включает три задания и выполняется в первой половине семестра. При выполнении работы можно использовать литературу, указанную во втором разделе настоящих указаний, в частности, Л1, любой из указанных справочников, а также журналы [Л.12 - Л.14]. В процессе выполнения контрольной работы №1 необходимо выполнить следующие пункты:

- 1. Изучить комплекс технических средств (см. табл.1, номер варианта определяется последней цифрой шифра зачетной книжки студента).
 - 2. Распределить КТС по блокам в соответствии с табл.2.
- 3. Для заданного ОУ в соответствии с вариантом (табл.1), пользуясь литературой, выбрать датчики и исполнительные устройства. Результаты представить в виде таблиц 2 и 3.

Методические указания

- 1. При выполнении п.2 по каждому модулю указать его технические характеристики: разрядность, уровень сигналов, диапазон измерения параметра, время преобразования в АЦП, погрешность и т.п. в соответствии с табл. 2. Характеристики соответствующих устройств брать из Приложения 1.
- 2. Выполнение п. 3 задания начать с изучения описания ОУ и литературы по ОУ, приведенных в Приложении 2. В результате анализа заданного ОУ должны быть выделены такие его характеристики, как входные переменные \vec{x} . выходные переменные $\vec{y} = [y_1, y_2, y_3]$, управляющие

воздействия $\vec{u} = [u_1, u_2]$, контролируемые \vec{f} и неконтролируемые \vec{b} возмущения (рис.1).

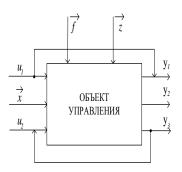


Рисунок.1. Схематичное изображение ОУ

Таблица 1 Распределить КТС по блокам в соответствии

№	Название комплекса технических средств	Объект управления	Литература
0	Микропроцессорные контроллеры: отечественные и зарубежные	Парогенератор	Л.1, Л.10, Приложение 1 (Octagon Systems), Приложение 2
1	ЦАП, АЦП, коммутаторы (мультиплексоры), нормализаторы	Парогенератор	Л.1, с.101 – 111, Приложение 1 (Octagon Systems), Приложение 2
2	Устройства передачи данных	Теплица	Л.1, с.111 – 114, Приложение 1 (Advantech), Приложение 2
3	Микропроцессорные контроллеры: отечественные и зарубежные	Теплица	Л.1, с.203 – 218, Приложение 1 (Advantech), Приложение 2
4	Устройства передачи данных	Турбина тепловой станции	Л.1, с.111 – 114, Приложение 1 (Octagon Systems), Приложение 2
5	Модули аналогового и цифрового ввода/вывода	Смеситель 1	Л.1, с.101, Приложение 1 (Advantech), Приложение 2
6	ЦАП, АЦП, коммутаторы (мультиплексоры), нормализаторы	Смеситель 2	Л.1, с.101 – 111, Приложение 1 (Advantech), Приложение 2
7	Модули аналогового ввода/вывода	Генератор переменного тока	Л.1, с.101, Приложение 1 (Octagon Systems), Приложение 2
8	Микропроцессорные контроллеры: отечественные и зарубежные	Процесс сушки	Л.1, с.101, Приложение 1 (Advantech), Приложение 2
9	Модули цифрового и аналогового ввода/вывода	Процесс сушки	Л.1, с.101, Приложение 1 (Advantech), Приложение 2

3. Выбрать датчики и исполнительные устройства. Информацию по датчикам и исполнительным устройствам свести в табл.3, где указать

параметры используемых устройств. При выборе датчиков и исполнительных устройств использовать следующие источники: Л.1, с. 72 - 87; Л.2, с. 31 - 32, 38 - 40; Л.4 – Л.6; Л.8; Л.10; Л.12; Л.13.

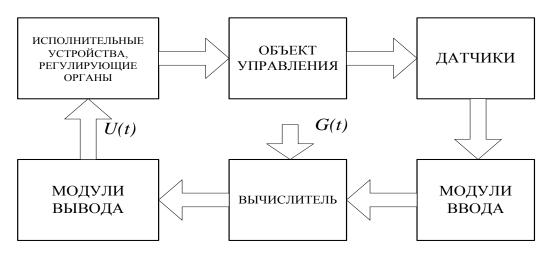
Датчики выбираются по диапазону и требуемой точности измерений. Диапазон изменения технологической переменной должен перекрываться диапазоном измерения выбираемого датчика, по крайней мере, на 1/3 снизу и 1/3 сверху с тем, чтобы при измерениях не попадать в области нелинейности статической характеристики датчика. Поскольку требуемая точность определяет условия выбора всех технических средств, входящих в систему, то она должна быть распределена между отдельными блоками. В частности, датчик может быть выбран из условия $\Delta_{y_{\partial am}} \le \chi \cdot \Delta_{y_{mp}}, \ 0 < \chi \le 0,6$ (пояснения к формуле и выбору величины χ см. в контрольной работе №2). При одинаковых диапазонов измерения значениях точности рассматриваемого ряда датчиков выбирается тот, у которого меньше инерционность и выше крутизна характеристики.

Таблица 2 Характеристики устройств

№ п/п	Марка	Назначени е	Количе ство и тип канало в	Диапазон измерения параметров	Уровни выходных сигналов	Разрядн ость	Точно сть, %	Частота опроса, Гц
			Me	одули аналогового і	ввода			
1	ADAM- 5018	Іодключение термопа _] к контроллеру	8, дифференциальные	J 0760°С, K 01000°С, T -100400°С, E 01400°С, R 5001750°С, S 5001800°С, B 5001800°С.	±15, ±50мВ, ±100, ±500мВ ±1В, ±2,5 В, ±20 мА	16	не хуже ±0,1%	10 Гц
2 и								
т.Д.								
			Моду	ли цифрового ввода	а-вывода			
				Модули коммутаці	ии			

Характеристики устройств

Физическ ая переменн ая	назначение, обозначение	Ед. изм.	Диапазон изменений технологиче ской переменной	точность, $\Delta_{y_{mp}}$	Тип датчика или исполнительного устройства	
----------------------------------	----------------------------	----------	--	-----------------------------	--	--


Таблица 3

Темпера тура	Регулирован ие, у ₁	°C	1000 - 1300	±5 ° C	Термопара R	(500 – 1750) / 0.1%
Угол поворо та заслонк и	Управление u ₁	Угловые градусы	0 – 90	±1%	Сервопривод МЭО-0,25	0 – 180
Уровень жидкост и	Контроль, у2	М	6.5 – 7.5	±0.12м	УДУ-5П	(0-12)м/0.015м
•••		•••	•••	•••	•••	•••

Контрольная работа №2

Настоящая работа посвящается выбору модулей ДЛЯ непосредственного цифрового управления непрерывным ТП (тип ОУ указан в табл. 1) в соответствии со структурной схемой (рис.2). Модули вводавычислитель В дальнейшем будем называть цифровым вывода управляющим устройством (ЦУУ). При выполнении контрольной работы необходимо:

- 1. В одноканальной системе управления выбрать датчик для измерения указанной в табл. 4 регулируемой переменной y(t). Выбор датчика осуществлять по заданным в табл. 4 значениям коэффициента χ , величине допустимой погрешности регулирования Δ_{ym3} и диапазону изменения регулируемой переменной D_y , взятым из описания ОУ (Приложение 2). Обычно его тип и параметры совпадают с одним из датчиков контрольной работы $\mathbb{N}1$. Номер варианта определяется последней цифрой шифра зачетной книжки студента.
- 2. Выбрать ЦУУ для целей управления непрерывным технологическим процессом. В качестве критерия выбора принять минимально возможную длину разрядной сетки.

Методические указания

Так как в качестве критерия выбора модулей ЦУУ задан минимум длины разрядной сетки, то расчеты необходимо начинать с оценки точности вычисления управляющего воздействия.

Расчет управляющего воздействия u(t) в цифровом вычислителе приводит к появлению ошибки σ_u , величина которой не должна превышать допустимой $\sigma_{u\partial on}$, т.е.

$$\sigma_u \leq \sigma_{u\partial on}.$$
 (1)

Допустимая погрешность $\sigma_{u\partial on}$ расчета управляющего воздействия u(t) определяется допустимой ошибкой σ_y регулируемой величины y(t). Если объект с самовыравниванием, т.е. $\lim h(t) < \infty$, то

$$\sigma_{u\partial on} = \beta \sigma_{vm3} / K_o, \qquad (2)$$

Где:

$$\sigma_{ym3} = |\Delta_{ym3}| \psi/3$$

ψ – среднеквадратическое значение заданной точности регулирования,

 β – коэффициент, определяющий долю заданной погрешности, отводимую на вычисления (согласно критерию пренебрежимых погрешностей $\beta \le 0.3$),

 K_0 – коэффициент передачи между выходом ЦАП и выходом объекта управления. Следовательно, он должен учитывать коэффициенты передач сервопривода, регулирующего органа и ОУ (его значение задается в табл. 4).

Таблица 4

№	ОУ и канал	Закон регулир	K_o	K_{pez}	$T_{u,}$	$T_{\partial u\phi}$, c	χ	ρ	$T_{o,}$	_	начения ассогла		
вар	регулирования	ования		•	С				С	e_{κ}	$e_{\kappa-1}$	$e_{\kappa-2}$	$e_{\kappa-3}$
0	Парогенератор: Расход топлива – давление перегретого пара	пид	0,15	30	250	24	0,5	0,5	8	0,47	0,62	0,78	0,92
1	Парогенератор: Расход воды на впрыск – температура перегретого пара	пид	1,46	0,4	80	24	0,5	0,2	2	0,16	0,374	0,6	0,836
2	Теплица: Расход воды на обогрев – температура воздуха	ПИ	20	3	600	ı	0,6	0,5	10	0,2	0,4	0,65	0,85
3	Теплица: Расход воды на распыление – влажность воздуха	ПИ	60	0,5	600	ı	0,4	0,4	5	0,4	0,55	0,75	0,9
4	Турбина:	ПИД	105	0,43	353,5	501	0,2	0,5	0,6	0,18	0,38	0,6	0,82

	Положение регулирующего клапана – частота вращения												
5	Смеситель 1: Расход потока F_1 — концентрация выходного потока C_0	ПИ	1,25	1	50	ı	0,6	0,1	5	0,15	0,3	0,6	0,9
6	Смеситель 2: Расход холодной воды – температура смеси	ПИ	4	4	250	-	0,3	0,5	2,5	0,2	0,4	0,65	0,9
7	Генератор переменного тока: Напряжение на выходе – ток возбуждения	пд	10	1	-	0.3	0,3	0,4	0,05	0,5	0,55	0,75	0,94
8	Сушка: Температура на выходе топки – расход топлива	ПИ	20	0,014	800	-	0,6	0,15	100	0,4	0,6	0,75	0,9
9	Сушка: Влажность сухого жома – расход топлива	пид	40	400	1	20	0,6	0,25	20	0,35	0,55	0,7	0,8

Величина ошибки σ_u в силу ее случайного характера оценивается как среднеквадратическая, имеющая три составляющие, т.е.

$$\sigma_u = \sqrt{\sigma_{unc}^2 + \sigma_{mem}^2 + \sigma_{mp}^2} , \qquad (3)$$

Где:

- $-\sigma_{mp}$ среднеквадратическое значение трансформированной ошибки, обусловленной трансформацией погрешностей входных переменных в соответствии с заданным законом управления;
- σ_{мет} среднеквадратическое значение методической ошибки,
 возникающей из-за неточной реализации в вычислителе операций интегрирования и дифференцирования [2];
- $-\sigma_{unc}$ среднеквадратическое значение инструментальной ошибки, обусловленной квантованием по уровню, т.е. конечной длиной разрядной сетки вычислителя.

В общем случае алгоритм управления по отклонениям представляет собой функционал вида

$$u_{\kappa} = F(u_{\kappa-i}, e_{\kappa-i+1})$$
, при $i = 1, 2, ... \nu$, (4)

Гле:

- F(...) некоторая функция своих аргументов;
- − $u_{\kappa-i}$ (i=1, 2, ... ν) − предыдущие значения управления;
- $e_{\kappa\text{-}i+1}$ значения ошибки рассогласования $e(t) \!\!=\!\! y_{\text{3ad}} y(t)$ при $t \!\!=\!\! (k \!+\! 1 \!-\! i) \!\!\times T_{\rm o}$
 - $-\ T_{o}$ интервал квантования по времени.

Величина v определяется порядком формул численного интегрирования и численного дифференцирования.

Например, при использовании формулы численного интегрирования нулевого порядка (формулы прямоугольников) функционал (4) для интегрального (И) закона управления будет иметь вид:

$$u_k = u_{k-1} + \left(\frac{T_o}{T_u}\right) * e_k. \tag{5}$$

С использованием формулы трапеций (формулы численного интегрирования первого порядка) расчет управляющего сигнала в вычислителе будет осуществляться по выражению:

$$u_k = u_{k-1} + \frac{T_o}{2T_u} * (e_k + e_{k-1}).$$
 (6)

При наличии в законе управления дифференциальной составляющей вычисление первой производной в численном виде выполняется с помощью ряда [9]:

$$\dot{e}_k = \frac{1}{T_0} \left\{ \Delta e_k + \frac{1}{2} \Delta^2 e_k + \frac{1}{3} \Delta^3 e_k + \dots \right\},\tag{7. a}$$

второй производной – в соответствии с уравнением:

$$\ddot{e}_k = \frac{1}{T_0^2} \left\{ \Delta^2 e_k + \Delta^3 e_k + \frac{11}{12} \Delta^4 e_k \dots \right\},\tag{7.6}$$

Где:

 $_{-}\Delta e_{k}=e_{k}-e_{k-1},$ $\Delta^{2}e_{k}=e_{k}-2e_{k-1}+e_{k-2},$ и т.д., причем от количества членов ряда зависит величина методической погрешности определения производной.

В системах управления с медленно изменяющимися переменными достаточно брать 2 первых слагаемых ряда (7.a) и 1 первое слагаемое ряда (7.б).

Среди линейных законов регулирования в ТАУ наиболее широко используются ПИ-, ПД- и ПИД-законы, которые можно представить в разностной форме:

Таблица 5

Законы регулирования

Регущиторы	Формула	
Регуляторы	Значение	Номер

В выражениях (8) - (10): $e_k = g_{3a\partial} - y_{k-1}$ – сигнал рассогласования, для операции интегрирования использована формула трапеций, для реализации \dot{e}_k взяты 2 первых слагаемых ряда (7. а).

Оценку составляющих ошибки σ_u при расчете управляющего воздействия необходимо производить для установившегося режима работы системы, учитывая следующие соображения: ошибки вычисления σ_u не накапливаются от шага к шагу, если замыкание главной отрицательной обратной связи происходит на каждом шаге вычислений, все ординаты u_k определяются по одному и тому же алгоритму в одинаковых условиях, поэтому можно считать, что ошибка вычисления u_k не зависит от ошибок предыдущих ординат u_{k-i} (i=1, 2..., v). Следовательно, в соответствии с [2, 3] из формулы (4) получаем

$$\sigma_{mp} = \sqrt{\sum_{i=1}^{m} \left[\frac{\partial F(u_{k-i}, e_{k-i+1})}{\partial e_{k-i+1}} \right]^2} \sigma_e^2, \quad i=1, 2..., v,$$
 (11)

Где:

 σ_e — среднеквадратическая ошибка сигнала рассогласования, равная среднеквадратической ошибке σ_{ex} на входе вычислителя в предположении, что погрешность g_{aa} равна нулю, т.е.

$$\sigma_e^2 = \sigma_{ex}^2 \ . \tag{12}$$

Из технического задания на разработку системы обычно известны диапазон изменения D_y и точность регулирования $\pm \Delta_{ym3}$ переменной y(t) (см. описание ОУ в Приложении 2).

Для выбора датчика и АЦП необходимо задать χ (0-0,6) – долю общей погрешности, приходящейся на датчик, и ρ (0-0,5) – долю общей погрешности, приходящейся на АЦП так, чтобы произведение $\rho\chi$ располагалось в диапазоне:

$$0 < \rho \times \chi \le 0.3. \tag{13}$$

При этом остальная величина допустимой погрешности приходится на ошибки вычисления управляющего воздействия и аппаратную погрешность, которая определяется классом точности используемой аппаратуры.

Из выражения (13) следует, что, задаваясь значениями коэффициентов ρ и χ , можно выбрать датчик и определить разрядность АЦП. В частности, чем меньше будет χ , тем точнее, но и дороже, будет датчик, а чем меньше будет ρ , тем с большей разрядной сеткой потребуется АЦП. К примеру, задавая $\chi = 0.6$, т.е. выбирая недорогой, но грубый датчик, из выражения (13) при $\rho \times \chi = 0.12$ получим $\rho = 0.2$. Следовательно, чтобы обеспечить высокую точность при плохом датчике, необходимо увеличивать разрядную сетку АЦП и, конечно, вычислителя.

Улучшения точности в этом случае добиваются применением программ усреднения или сглаживания, позволяющих ослабить низкочастотный шум в η (2-10) раз. Теоретические сведения об алгоритмах сглаживания можно найти в [2, 10],

При этом среднеквадратическая ошибка сигнала рассогласования σ_e

будет уменьшаться, поскольку $\sigma_{czn}^2 = \frac{\sigma_e^2}{\eta}$ (σ_{czn}^2 – средний квадрат ошибки после сглаживания).

После того как датчик выбран в соответствии с условием

$$\Delta_{v\partial am} \le \chi \, \Delta_{ym3} \tag{14}$$

С учетом заданного в табл. 4 значения коэффициента χ , из его паспортных данных становятся известны диапазон измерения $D_{y\partial am}$ и точность $\Delta_{v\partial am}$.

В результате дисперсия погрешности на входе вычислителя составит:

$$\sigma_{ex}^2 = \sigma_{\partial am}^2 + \sigma_{AUII}^2 = (1 + \rho^2)\sigma_{\partial am}^2 \cdot k_{npc}^2, \tag{15}$$

Гле:

 $-\rho$ – коэффициент, величина которого задается в табл. 4,

- $-k_{npc}$ коэффициент пересчета изменения реальной физической величины в напряжение на входе АЦП (на выходе датчика $U_{{\it вых_dam}}$). Числовое значение этого коэффициента зависит от максимального значения физической величины
- $-y_{\text{макс}}$, измеряемой датчиком, и от максимального входного напряжения АЦП (обычно это 10 B), т.е.

$$k_{npc} = \frac{U_{\text{вых_даm}}}{y_{\text{макс}}}.$$
 (16)

На основании формул (8) – (16) можно рассчитать величину трансформированной погрешности.

Например, при Π -законе управления производная $\frac{dF}{de_i}$ будет равна k_{pez} , следовательно, дисперсия трансформированной погрешности

$$\sigma_{mp}^2 = k_{pee}^2 \sigma_{ex}^2$$

или с учетом (15)

$$\sigma_{mp}^2 = k_{pee}^2 (1 + \rho^2) \sigma_{\partial am}^2 k_{npc}^2.$$

При ПИД-законе в случае интегрирования по трапециям и использования для вычисления производной 2-х членов ряда (7. а)

$$\sigma_{mp}^{2} = \left[k_{pee}^{2} + 0.5\left(\frac{T_{o}}{T_{u}}\right)^{2} + 6.5\left(\frac{T_{\partial u\phi}}{T_{o}}\right)^{2}\right] \cdot (1 + \rho^{2}) \cdot \sigma_{\partial am}^{2} k_{npc}^{2}.$$

Среднеквадратическое значение методической погрешности σ_{Mem} при её нормальном распределении определяется выражением

$$\sigma_{Mem}^{uhm} = \left| \Delta_{Mem}^{uhm} \right| / 3. \tag{17}$$

Абсолютная величина методической погрешности $\Delta_{\text{мет}}$ при интегрировании по методу прямоугольников [2]:

$$\Delta_{Mem}^{UHm-np} = \frac{T_o^2}{2T_u} \left[\frac{de(t)}{dt} \right]_{Makc}, \quad (i-1)T_o \le t \le iT_o, \quad (18)$$

а при интегрировании по методу трапеций [2]:

$$\Delta_{Mem}^{UHm}{}^{mp} = \frac{T_o^3}{12T_u} \left[\frac{d^2 e(t)}{dt^2} \right]_{Makc}, \quad (i-1)T_o \le t \le iT_o. \quad (19)$$

Таким образом, зная максимальные значения 1-й и 2-й производных ошибки рассогласования и величину интервала дискретности T_o , можно, пользуясь формулами (17), (18) или (17), (19), вычислить дисперсию методической погрешности σ_{mem}^2 на шаге T_o при вычислении интеграла.

Абсолютное значение методической погрешности получения первой производной, вычисляемой по (7. a) с 2-мя членами ряда будет равно:

$$\Delta_{Mem}^{\partial u\phi} = \frac{1}{3T_o} \Delta^3 e_k = \frac{1}{3T_o} (e_k - 3e_{k-1} + 3e_{k-2} - e_{k-3}). \tag{20}$$

В то время как использование одного слагаемого в (7. а) приводит к методической погрешности дифференцирования следующего вида:

$$\Delta_{Mem}^{\partial u\phi} = \frac{1}{2T_o} \Delta^2 e_k + \frac{1}{3T_o} \Delta^3 e_k = \frac{1}{6T_o} (5e_k - 12e_{k-1} + 9e_{k-2} - 2e_{k-3}). \tag{21}$$

Замечание. Поскольку перед дифференциальной составляющей в законе управления стоит постоянная времени $T_{\partial u \phi}$, то при оценке погрешностей вычисления управления она как масштабный коэффициент должна быть учтена в выражениях (20) и (21).

Для оценки инструментальной погрешности, обусловленной ограниченной длиной разрядной сетки вычислителя, необходимо знать эту длину. Из практики и технической литературы известно, что АЛУ вычислителя должно превышать разрядность АЦП на величину d, т.е.

$$N_{AJIV} = N_{Y_{AJIII}} + d. \tag{22}$$

При этом величина младшего разряда АЛУ вычислителя составит

$$\Delta_{AJJV} = 2^{-d} \Delta_{y_{AJJJJ}}. \tag{23}$$

Величина d не должна быть меньше 4-х, чтобы результат не был искажен вычислительными погрешностями, и окончательная длина разрядной сетки АЛУ должна быть кратна байту.

Длина разрядной сетки АЦП $N_{y_{AUII}}$ рассчитывается в соответствии с выражением:

$$N_{y_{AIIII}} = E \left\{ \log_2 \left(\frac{D_{y \partial am} \sqrt{3}}{2 \cdot \rho \cdot \Delta_{y \partial am}} + 1 \right) \right\}, \tag{24}$$

в котором операция $E\{...\}$ означает округление результата до ближайшего целого в большую сторону, а коэффициент $\frac{2}{\sqrt{3}}$ появляется из-за разницы в вычислении дисперсий погрешностей датчика и АЦП.

Так как погрешность датчика подчиняется нормальному закону распределения, а погрешность АЦП – равномерному, то дисперсии соответствующих погрешностей будут равны:

$$\sigma_{\partial am}^2 = \frac{\left(\Delta_{y_{\partial am}}\right)^2}{9}, \ \sigma_{AUII}^2 = \frac{\left(\Delta_{y_{AUII}}\right)^2}{12}.$$

Следовательно, учитывая, что $\sigma_{AU\Pi}^2 = \rho^2 \sigma_{\partial am}^2$, величину младшего разряда АЦП можно определить как

$$\Delta_{y_{AUII}} = \frac{2}{\sqrt{3}} \rho \Delta_{y_{\partial am}} \tag{25}$$

Для окончательной оценки **инструментальной** погрешности необходимо подсчитать количество округлений **m** в формуле вычислений управляющего воздействия [2, 8] и определить дисперсию единичного округления в АЛУ с учетом равномерного закона распределения как

$$\sigma_{AJJV}^2 = \frac{\Delta_{AJJV}^2}{12}.$$

В результате полная инструментальная погрешность вычисления на шаге T_o управляющего воздействия

$$\sigma_{uhc}^2 = m \cdot \sigma_{A/IV}^2,$$
 (26)

После того как все составляющие погрешности вычисления управляющего воздействия определены, следует проверить условие (1).

Если оно не выполняется, то нужно определить, какую из погрешностей необходимо уменьшать в первую очередь.

Уменьшить погрешность **метода** можно, во-первых, путем уменьшения интервала дискретности T_o^{**} , во-вторых, использованием более точных формул численного интегрирования и дифференцирования, пересчитав при этом значение инструментальной погрешности и опять проверив условие (1).

Уменьшение величины **трансформированной** погрешности в η ($2 \le \eta \le 10$) раз можно добиться, как было уже сказано, введением алгоритмов сглаживания: экспоненциального или скользящего среднего [2, 10].

Величина инструментальной погрешности уменьшается только использованием устройств с большей длиной разрядной сетки.

** Уменьшение значения T_o ограничивается, прежде всего, возможностями используемых технических средств, поскольку за это время должны быть выполнены следующие процедуры: опрос датчиков, преобразование аналоговых отсчетов в код, первичная обработка, вычисление кода управляющего воздействия, преобразование его в напряжение и передача сигнала управления в исполнительное устройство.

Выбор ЦАП осуществляется по требуемому количеству разрядов, которое рассчитывается по формуле:

$$N_{u_{\text{IIAII}}} = E \left\{ \log_2 \left(\frac{U_{\text{MAKC}}}{\Delta_{u_{\partial on}}} + 1 \right) \right\}, \tag{27}$$

Где:

- $-U_{{\scriptscriptstyle MAKC}}$ величина максимального напряжения на выходе ЦАП (например, 5 В),
- $-\Delta_{u_{\partial on}}$ цена младшего разряда ЦАП, которая с учетом равномерного распределения инструментальной погрешности и формулы (1) имеет следующий вид:

$$\Delta_{u\partial on} = 2\sqrt{3} \times_{\sigma_{\text{ugon}}}, \text{ B.}$$
 (28)

Примечание.

- 1. Размерность K_0 определяется как отношение размерности выходной величины ОУ к напряжению на выходе ЦАП в Вольтах.
- 2. Диапазон регулирования D_y , требуемую точность регулирования $\Delta_{y_{m3}}$ необходимо определить из описания ОУ (Приложение 2).
- 3. После выполнения изложенных выше расчетов необходимо из приложения 1 подобрать соответствующие модули, отвечающие требованиям по точности преобразований и вычислений, привести их марку и технические характеристики.

Если же Вам известны более экономичные отечественные или импортные технические средства, то более разумно использовать их с указанием тех же характеристик.

Критерии оценки:

- оценка «отлично» выставляется студенту, если работа выполнена правильно, оформлена в соответствии с требованиями методических указаний, соблюдены основные расчётные параметры, подобрано оборудование в соответствии с экономическими показателями, произведено экономическое сравнение нескольких аналогов;
- оценка «хорошо» выставляется студенту, если работа выполнена в соответствии с требованиями методических правильно, оформлена указаний, соблюдены основные расчётные параметры, подобрано оборудование соответствии экономическими показателями, В c произведено экономическое сравнение нескольких аналогов;
- оценка «удовлетворительно» выставляется студенту, если работа выполнена правильно, оформлена в соответствии с требованиями методических указаний, имеются неточности в основных расчётных параметрах на выходе расчётов, оборудование не подобрано в соответствии с экономическими показателями, не произведено экономическое сравнение нескольких аналогов;
- оценка «неудовлетворительно» выставляется студенту, если работа выполнена не правильно, независимо от оформления.

Ст. преподаватель

П.С. Цвинкайло

10 сентября 2020 г.

«УТВЕРЖДАЮ»	>
зав. кафедрой «А	втоматизация
технологических	процессов и
производств»	
доцент	В.Е.Федоров
« »	2020 г.

Вопросы к зачёту с оценкой по дисциплине «Средства автоматизации и управления» для студентов III курса (o/o, з/o) направления «Автоматизации технологических процессов и

профиля подготовки

производств»

«Автоматизации технологических процессов и производств»,

- 1. Автоматизированные станочные приспособления.
- 2. Автоматизированный контроль. Измерительные элементы.
- 3. Автоматические регуляторы. Классификация.
- 4. Программируемые логические контроллеры. Устройство, назначение, мировые тенденции развития.
 - 5. Промышленные компьютеры.
 - 6. Сборочные промышленные роботы.
 - 7. Классификация ТС по функциональному назначению в САУ.
 - 8. Тенденции развития ТСА.
 - 9. Методы изображении ТСА.
 - 10. Основные принципы построения ТСА.
 - 11. Функционально-иерархическая структура ГСП.
 - 12. Конструктивно-технологическая структура ГСП.
 - 13. Система стандартов ГСП.
- 14. Классификация исполнительных устройств по конструктивному исполнению.
 - 15. Типы регулирующих органов.
 - 16. Исполнительные механизмы классификация и назначение.
- 17. Расчет и выбор размера исполнительного устройства по пропускной способности.
 - 18. Выбор пропускной характеристики исполнительного устройства.
- 19. Принципиальные электрические схемы реализации законов регулирования,
 - 20. Принципиальные электрические схемы ограничения выходных

сигналов

- 21. Принципиальные электрические схемы трехпозиционных усилителей
- 22. Принципиальные электрические схемы функциональных обратных связей
 - 23. Принцип действия релейно-импульсного регулятора.
 - 24. Типы электродвигателей, схемы управления
 - 25. Статические и динамические характеристики.
- 26. Структурные схемы программируемых логических контролером (ПЛК)
 - 27. Устройства связи с объектом.
 - 28. Программное обеспечение.
 - 29. Индустриальные PC и промышленные контроллеры (PLC).
 - 30. Состав технических средств автоматизации
 - 31. Логические устройства
- 32. Классификация первичных ИП. Основные характеристики ИП. Варианты структурной организации ИП.
- 33. Пропорциональные регуляторы (П-регулятор) классификация, принцип действия, применение.
- 34. Пропорционально дифференциальный регулятор (ПД-регулятор) классификация, принцип действия, применение.
- 35. Пропорционально интегральный регулятор (ПИ-регулятор) классификация, принцип действия, применение.
- 36. Пропорционально интегрально-дифференциальный регулятор (ПИД-регулятор) классификация, принцип действия, применение.
- 37. Государственная система приборов ГСП: принципы построения, классификация средств измерения и автоматизации, основные ветви нормирования характеристик;
- 38. Типовые структуры средств измерений (автоблокировщики, автоостановы, автоподналадчики), информационно-измерительные системы, виды технических измерений (пассивные, активные), координатно-измерительные машины и роботы;
- 39. Измерение физических величин (чувствительные элементы датчиков, интерфейсные схемы, конструктивные исполнения датчиков);
- 40. Типовые технические средства автоматизации: классификация, назначение, характеристики;
- 41. Электрические, электронные, пневматические, гидравлические, комбинированные средства автоматизации;
 - 42. Регуляторы, исполнительные механизмы, интерфейсные

устройства, МП-средства.

- 43. Обобщенная схема системы автоматизации и управления (САиУ) техническими объектами и технологическими процессами. Типовые структуры САиУ. Назначение и состав технических средств САиУ. Функции различных уровней САиУ. Классификация САиУ. Типовое обеспечение САиУ. Этапы разработки САиУ.
- 44. Технические средства получения информации о состоянии объекта управления, датчики, измерительные преобразователи (ИП). Обобщенная схема ИП. Классификация контролируемых и регулируемых параметров.
- 45. Технические средства использования командной информации и воздействия на объект управления, исполнительные устройства (ИУ), регулирующие органы. Обобщённая схема ИУ. Классификация ИУ. Основные характеристики электрических ИУ. Электрические ИУ с постоянной скоростью, с переменной скоростью, позиционного типа.
- 46. Устройства связи с объектом управления. Классификация. Примеры устройств связи с объектом управления. Особенности программного обеспечения, используемого для взаимодействия с устройствами связи с объектом управления.
- 47. Технические средства приема, преобразования и передачи измерительной и командной информации по каналам связи. Аппаратно-программные средства распределенных САиУ, локальные управляющие вычислительные сети (ЛУВС), методы управления доступом к моноканалам ЛУВС.
- 48. Общие сведения о технических средствах автоматизации и управлении (ТСАиУ). Основные понятия и определения: комплекс технических средств (КТС), АСУТП, технологический объект управления (ТОУ) и АТК.
- 49. Основные этапы и системотехнические принципы проектирования ТСАиУ.
- 50. Классификация ТСАиУ по их функциональному назначению в АСУТП. 4
- 51. Технико-экономические критерии качества функционирования и цели управления АСУТП.
- 52. Классификация систем и средств автоматизации технологических процессов. Типовые структуры.
- 53. Локальные и централизованные системы контроля, регулирования и управления. Структуры и особенности.
- 54. Автоматизированные системы управления технологическими процессами. Структуры и особенности централизованных и супервизорных

АСУ ТП.

- 55. Структуры и особенности распределенных АСУ ТП.
- 56. Основные принципы построения ТСАиУ.
- 57. Государственная система промышленных приборов и средств автоматизации (ГСП).
- 58. Функционально-иерархическая структура технических средств ГСП. «Этажи» управления современным производством.
- 59. Конструктивно-технологическая структура ГСП. Понятия и определения АКТС, УКТС и ПТК. Примеры.
- 60. Система стандартов ГСП. Информационная совместимость технических средств ГСП.
- 61. Структуры электрической, пневматической и гидравлической ветвей ГСП.
- 62. Гидравлические и пневматические ТСАиУ. Области применения и особенности технических средств гидропневмоавтоматики (ГПА). Классификация устройств ГПА.
- 63. Однократные преобразователи энергии ГПА (энергообеспечивающая и исполнительная подсистемы).
 - 64. Направляющая и регулирующая подсистемы ГПА.
 - 65. Информационная и управляющая (логическая) подсистемы ГПА.
 - 66. Мембранные и струйные элементы и системы ГПА. Модуль
- 67. Устройства получения информации о состоянии объекта автоматизации. Управляемые входные и выходные переменные (датчики и исполнительные механизмы).
- 68. Основные параметры и характеристики устройств получения информации. Измерительные (первичные) и нормирующие (вторичные) преобразователи.
- 69. Средства приема, преобразования и передачи информации по каналам связи. Общие сведения и классификация. Устройства связи с объектом (УСО). Общие характеристики стандартных интерфейсов. Структуры каналов УСО.
 - 70. Промышленные сети и их разновидности. Примеры.
- 71. Аппаратные (схемные) и перенастраиваемые устройства логического управления. Основные понятия и определения. Типы автоматических устройств управления: жесткая (монтажная) и гибкая (программируемая) логика
- 72. Характеристика программируемых устройств логического управления. Программируемые запоминающие устройства. Арифметикологические устройства. Программируемые логические матрицы.

- 73. Программируемые промышленные микроконтроллеры. Назначение, особенности, классификация.
- 74. Программируемые логические контроллеры (ПЛК). История появления, области использования, достоинства и особенности.
- 75. Программируемые и жесткие устройства логического управления два подхода в решении задач автоматизации.
 - 76. Особенности работы жесткой и гибкой логики.
- 77. Функционально-конструктивная схема модульного ПЛК. Состав и назначение модулей.
 - 78. Архитектура ПЛК. Структурная схема модульного ПЛК.
- 79. Основные технические характеристики и параметры ПЛК. 33. Архитектура центрального модуля ПЛК. Состав центрального процессора. Основные потоки информации. Стековая память.
 - 80. Понятие цикла работы ПЛК. Виды циклов и фазы их работы.
- 81. Центральная память ПЛК. Классификация запоминающих устройств.
- 82. Типы данных и способы адресации памяти ПЛК. 37. Модули ввода-вывода ПЛК. Назначение, архитектура и состав.
- 83. Дискретные модули ввода-вывода. Принцип действия и схемотехнические решения.
- 84. Аналоговые модули ввода-вывода. Назначение и принцип действия.
- 85. Надежность и безопасность ПЛК. Методы и средства повышения надежности и безопасности.
 - 86. Устройства программирования ПЛК (программаторы).
 - 87. Программно-математическое обеспечение ПЛК. Классификация.
- 88. Системное программное обеспечение ПЛК. Алгоритм работы программы-монитора.
 - 89. Прикладное промышленное программное обеспечение АСУ ТП.
- 90. Языки программирования высокого уровня ПЛК: язык релейно-контактных схем, язык функциональных блоков, язык списка операторов.
- 91. Устройства отображения информации и средства визуализации ТП. Общие сведения.
- 92. Панели операторов (текстовые и графические). Средства человекомашинного интерфейса. SKADA системы.

Экзаменатор, ст. преподаватель	П.С. Цвинкайло
Susamenarop, et. iipenegabarenb	11.0. 45111111411110