Государственное образовательное учреждение высшего образования «ПРИДНЕСТРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени Т.Г. Шевченко»

филиал ПГУ им. Т.Г. Шевченко в г. Рыбница

Кафедра «Автоматизации технологических процессов и производств»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине

Б1.Б9 «Теоретическая механика»

Основной образовательной программы высшего образования по направлению подготовки 2.15.03.04 «Автоматизация технологических процессов и производств»

профиль «Автоматизация технологических процессов и производств» квалификация выпускника «бакалавр»

форма обучения: очная, заочная

Разработчик: ст. преподаватель

П.С. Цвинкайло

Обсужден на заседании кафедры АТПиП

« 22 » 09_____ 2020 г.

Протокол № 2___/

Зав. кафедрой АТПиИ: доцент

В.Е. Федоров

Рыбница 2020 г.

ПАСПОРТ

фонда оценочных средств этапов формирования компетенций по дисциплине

«Теоретическая механика»

1. В результате изучения дисциплины «Теоретическая механика» обучающийся должен:

1.1 Знать:

- Основные понятия и концепции теоретической механики,
 важнейшие теоремы механики и их следствия, порядок применения
 теоретического аппарата механики в важнейших практических приложениях.
- Определения основных механических величин, понимая их смысл и значение для теоретической механики.
- Основные модели механических явлений, основы идеологии моделирования технических систем и принципы построения математических моделей механических систем.
- Основные методы исследования равновесия и движения механических систем (включая составление уравнений равновесия или движения и решение данных уравнений), важнейших (типовых) алгоритмов такого исследования.
- Законы преобразования систем сил; условия равновесия систем сил на плоскости и в пространстве и условия равновесия тел; трения скольжения и сопротивление качению на равновесие тел.
- Способы задания движения точки и тела, законы определения скоростей и ускорений точек при плоском, сферическом и произвольном движении тела.
- Основные задачи динамики материальной точки и уравнения движения системы материальных точек.
- Колебания материальной точки и механической системы. Принцип Даламбера, метод кинетостатики, принцип возможных перемещений, общее уравнение динамики, уравнение Лагранжа второго рода, уравнение равновесия в обобщённых координатах, потенциальное силовое поле.

1.2 Уметь:

 Использовать основные понятия законы и модели механики для интерпретации и исследования механических явлений с применением соответствующего теоретического аппарата.

- Пользоваться определениями механических величин и понятий для правильного истолкования их смысла.
- Объяснять характер поведения механических систем с применением важнейших теорем механики и их следствий.
- Записывать уравнения, описывающие поведение механических систем, учитывая размерности механических величин и их математическую природу (скаляры, векторы, линейные операторы).
- Применять основные методы исследования равновесия и движения механических систем, а также типовые алгоритмы такого исследования при решении конкретных задач.
 - Решать типовые задачи по основным разделам курса.
- Определять силы реакций, действующих на тело, и силы взаимодействия между телами системы;
- Определять скорости и ускорения точек тела во вращательном и плоском движениях; определять динамические реакции опор вращающихся тел.
- Анализировать кинематические схемы механических элементов агрегатов и комплексов, определять их основные динамические характеристики
- Пользоваться при аналитическом и численном исследования математико-механических моделей технических систем возможностями современных компьютеров и информационных технологий.

1. Владеть:

- Навыками построения и исследования математических и механических моделей технических систем.
- Навыками применения основных законов теоретической механики при решении естественнонаучных и технических задач.
- Навыками применения типовых алгоритмов исследования равновесия и движения механических систем.
- Навыками использования возможностей современных компьютеров и информационных технологий при аналитическом и численном исследования математико-механических моделей технических систем.
- Навыками письменного аргументированного изложения собственной точки зрения.
- Навыками практического анализа логики различного рода рассуждений.

- Методами анализа механизмов в статике, кинематике и динамике.
- Критериями выделения основных параметров, влияющих на устойчивую работу установок и агрегатов.
- Опытом работы и использования научно-технической информации, *Internet*-ресурсов, баз данных и каталогов, электронных журналов и патентов, поисковых ресурсов и др. в области высокотехнологического оборудования
 - 2. Программа оценивания контролируемой компетенции:

Текущая аттестац ия	Контролируемые модули, разделы (темы) дисциплины и их наименование *	Код контролируемой компетенции (или ее части)	Наименование оценочного средства**				
1	Раздел 1. Статика	OK-5,	Тесты №1-2				
2	газдел 1. Статика	ОК-5, ОПК-3	Контрольная работа № 1				
3	D 2 1/2	OHIC 2	Тесты №3				
4	Раздел 2. Кинематика	ОПК-3,	Контрольная работа № 2				
5	Раздел 3. Динамика	ПК-20	Тесты №4				
		ОК-5, ОПК-3, ПК-20	Курсовая работа				
Промежут	очная аттестация	Код контролируемой компетенции (или ее части)	Наименование оценочного средства**				
	1	ОК-5, ОПК-3, ПК-20	Контрольная работа № 1, 2, курсовая работа, зачёт- вопросы к зачёту, экзамен- экзаменационные билеты				

^{*} Выбор контролируемых единиц (модули, разделы, темы рабочей программы дисциплины) для текущей аттестации (при наличии) преподаватель определяет самостоятельно, каждый сопровождается комплектом оценочных средств.

Государственное образовательное учреждение высшего образования «ПРИДНЕСТРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени Т.Г. Шевченко»

филиал ПГУ им. Т.Г. Шевченко в г. Рыбница

Кафедра «Автоматизации технологических процессов и производств»

Тест

по дисциплине «Теоретическая механика»

Тест 1.

- 1. Жесткая заделка (число реакций связи)?
 - 1. **3**
 - 2. 2
 - 3. 1
 - 4. 1.5
 - 5. 1,8

2. Направление реакций гибких связей?

- 1. вдоль связи
- 2. перпендикуляр связи
- 3. касательные связи
- 4. образует угол 30^{0}
- 5. по направлению веса тела

3. Что называется связью?

- 1. поступательное движение
- 2. любое движение тела
- 3. ограничение движения тела
- 4. взаимодействие тела
- 5. вращение тела

4. Две пары, лежащие в одной плоскости, можно заменить:

1. одной парой, лежащей в той же плоскости, с моментом, равным сумме моментов данных двух пар

- 2. тремя парами, лежащими в той же плоскости, с моментом, равным сумме моментов данных двух пар
 - 3. нельзя заменить
 - 4. нет правильного ответа

5. Моментом силы относительно точки (центра) называется:

- 1. сумма сходящихся сил
- 2.момент, численно равный произведению модуля силы на плечо, т. е. на кратчайшее расстояние от указанной точки до линии действия силы
 - 3. сумма всех моментов
 - 4. нет правильного ответа

6. Что называется реакцией связи?

- 1. сила, с которой связь действует на тело
- 2. внешняя сила
- 3. момент силы
- 4. пара сил
- 5. уравновешенная сила

7. Сила, приложенная в какой-либо точке твердого тела, эквивалентна:

- 1. такой же силе, приложенной в любой другой точке этого тела, и паре сил, момент которой равен моменту данной силы относительно новой точки приложения
 - 2. такой же силе
 - 3. паре сил
 - 4. равна нулю

8. Системой сил называется:

- 1. совокупность сил, не приложенных к телу
- 2. $F_1,...F_9$
- 3. $Q_1, Q_2, ..., Q_s$
- 4. совокупность нескольких сил, приложенных к твердому

тел

5. совокупность бесконечных сил

9. Парой сил называется:

- 1. две силы направленные перпендикулярно
- 2. три силы разных направлений
- 3. противоположные силы
- 4. равные силы направленные в одну сторону
- 5.две силы параллельные, равные по модулю,

направленные в противоположные стороны

- 10. Векторное уравнение равновесия пары сил?
 - $1. \sum \overline{m}_k = 0$
 - $2. \sum \overline{m}_x = 0$
 - 3. $\sum \overline{m}_y = 0$
 - 4. $\sum \overline{m}_z = 0$
 - $5. \sum \overline{m}_0 = 0$
- 11. Если F = 1H, $<(\overline{F}, y\overline{i}) = 30^{\circ}$ Чему равна проекция силы на ось х?
 - 1. $F = \sin 30^{\circ}$
 - 2. $F = tg 30^{\circ}$
 - 3. $F = ctg 30^{\circ}$
 - 4. $F = \cos 60^{\circ}$
 - 5. $F_{\rm v} = \cos 30^{\circ}$
- 12. Теорема Вариньона: момент равнодействующей плоской системы сходящихся сил относительно любого центра равен:
 - 1. равнодействующей силы
 - 2. сумме сходящихся сил
 - 3. нулю
- 4. алгебраической сумме моментов слагаемых сил относительно того же центра
- 13. Задачи, в которых число неизвестных не больше числа независимых условий равновесия для данной системы сил, приложенных к твердому телу, называются:
 - 1. статически определимыми.
 - 2. статически неопределимыми
 - 3. статически не возможными
 - 4. нет правильного ответа

14. Закон движения твердого тела при поступательном движении:

1.
$$\begin{cases} x_A = x(t) \\ y_A = y(t) \\ z_A = z(t) \end{cases}$$

2.
$$\begin{cases} x_A = x(t) \\ \varphi_{AZ} = \varphi(t) \\ z_A = z(t) \end{cases}$$

3.
$$\begin{cases} x = x_A(t) \\ y = y_A(t) \\ z = z_A(t) \end{cases}$$
4.
$$\begin{cases} x = x_A(t) \\ y = y_A(t) \end{cases}$$

$$4. \begin{cases} x = x_A(t) \\ y = y_A(t) \end{cases}$$

15. Будет ли тело находиться в равновесии, если на него действуют три пары сил, приложенных в одной плоскости, и моменты этих пар имеют следующие значения: M_1 =-600 Hm; M_2 =320 Hm и M_3 =280 Нм.

- 1. тело будет находиться в равновесии;
- 2. тело не будет находиться в равновесии.
- 3. тело будет двигаться
- 4. тело будет вращаться

16. Фермой называется жесткая конструкция из:

- 1. прямолинейных стержней, соединенных на концах шарнирами
 - 2. подвешенных тел
 - 3. балок с жестким защемлением
 - 4. жестких шарниров

17. Метод сечений (метод Риттера) используют для:

- 1. определения суммы моментов
- 2. определения направления действия сил
- 3. определения ускорений
- 4. определения усилий в отдельных стержнях фермы
- 18. Сила трения при скольжении твердых тел зависит от:
 - 1. свойств поверхностей

- 2. силы давления
- 3. скорости движения
- 4. Свойств поверхностей, силы давления, скорости

движения.

19. Если однородное тело имеет плоскость симметрии, то центр тяжести его находится:

- 1. в этой плоскости
- 2. на удалении 20 см. от плоскости
- 3. под углом 30 град. К оси симметрии
- 4. нет правильного ответа

20. Вектор угловой скорости при вращательном движении твердого тела?

1.
$$\omega = \frac{d\varphi}{dt}$$

2.
$$\varepsilon = \frac{d\varphi}{dt}$$

3.
$$\varepsilon = \frac{d\varphi}{dz}\bar{k}$$

Ответы на тест №1

Вопрос	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ответ	1	1	3	1	2	1	1	4	5	1	5	4	1	1	1	1	4	4	1	1

Тест №2

1. Жесткая заделка (число реакций связи)?

- 1. **3**
- 2. 2
- 3. 1
- 4. 1,5
- 5. 1,8

2. Направление реакций гибких связей?

- 1. вдоль связи
- 2. перпендикулярно связи
- 3. касательные связи
- 4. образует угол 30^{0}
- 5. по направлению веса тела

3. Что называется, связью?

- 1. поступательное движение
- 2. любое движение тела
- 3. ограничение движения тела
- 4. взаимодействие тела
- 5. вращение тела

4. Две пары, лежащие в одной плоскости, можно заменить:

- 1. одной парой, лежащей в той же плоскости, с моментом, равным сумме моментов данных двух пар
- 2. тремя парами, лежащими в той же плоскости, с моментом, равным сумме моментов данных двух пар
 - 3. нельзя заменить
 - 4. нет правильного ответа

5. Моментом силы относительно точки (центра) называется:

- 1. сумма сходящихся сил
- 2.момент, численно равный произведению модуля силы на плечо, т. е. на кратчайшее расстояние от указанной точки до линии действия силы
 - 3. сумма всех моментов
 - 4. нет правильного ответа

6. Что называется реакцией связи?

- 1. сила, с которой связь действует на тело
- 2. внешняя сила
- 3. момент силы
- 4. пара сил
- 5. уравновешенная сила

7. Сила, приложенная в какой-либо точке твердого тела, эквивалентна:

- 1. такой же силе, приложенной в любой другой точке этого тела, и паре сил, момент которой равен моменту данной силы относительно новой точки приложения
 - 2. такой же силе
 - 3. паре сил
 - 4. равна нулю

8. Системой сил называется:

- 1. совокупность сил, не приложенных к телу
- 2. $F_1,...F_9$
- 3. $Q_1, Q_2, ..., Q_s$
- 4. совокупность нескольких сил, приложенных к твердому

тел

5. совокупность бесконечных сил

9. Парой сил называется:

- 1. две силы направленные перпендикулярно
- 2. три силы разных направлений
- 3. противоположные силы
- 4. равные силы направленные в одну сторону

5.две силы параллельные, равные по модулю, направленные в противоположные стороны

10. Векторное уравнение равновесия пары сил?

- 1. $\sum \overline{m}_k = 0$
- $2. \sum \overline{m}_x = 0$
- 3. $\sum \overline{m}_{v} = 0$
- 4. $\sum \overline{m}_z = 0$
- $5. \ \sum \overline{m}_0 = 0$

11. Если F = 1H, $<(\overline{F}, y\overline{i}) = 30^{\circ}$ Чему равна проекция силы на ось х?

- 1. $F = \sin 30^{\circ}$
- 2. $F = tg30^{\circ}$
- 3. $F = ctg 30^{\circ}$
- 4. $F = \cos 60^{\circ}$
- 5. $F_X = \cos 30^\circ$

12. Теорема Вариньона: момент равнодействующей плоской системы сходящихся сил относительно любого центра равен:

- 1. равнодействующей силы
- 2. сумме сходящихся сил
- 3. нулю
- 4. алгебраической сумме моментов слагаемых сил относительно того же центра

- 13. Закон движения твердого тела при поступательном движении:
 - $\mathbf{1.} \begin{cases} y_A = y(t) \\ z_A = z(t) \end{cases}$
 - 2. $\begin{cases} x_A = x(t) \\ \varphi_{AZ} = \varphi(t) \\ z_A = z(t) \end{cases}$
 - 3. $\begin{cases} x = x_A(t) \\ y = y_A(t) \\ z = z_A(t) \end{cases}$ 4. $\begin{cases} x = x_A(t) \\ y = y_A(t) \end{cases}$
- 14. Задачи, в которых число неизвестных не больше числа независимых условий равновесия для данной системы сил, приложенных к твердому телу, называются:
 - 1. статически определимыми.
 - 2. статически неопределимыми
 - 3. статически не возможными
 - 4. нет правильного ответа
- 15. Будет ли тело находиться в равновесии, если на него действуют три пары сил, приложенных в одной плоскости, и моменты этих пар имеют следующие значения: M_1 =-600 H_M ; M_2 =320 H_M u M_3 =280 Нм.
 - 1. тело будет находиться в равновесии;
 - 2. тело не будет находиться в равновесии.
 - 3. тело будет двигаться
 - 4. тело будет вращаться

16. Фермой называется жесткая конструкция из:

- 1. прямолинейных стержней, соединенных на концах шарнирами
 - 2. подвешенных тел
 - 3. балок с жестким защемлением
 - 4. жестких шарниров
 - 17. Метод сечений (метод Риттера) используют для:

- 1. определения суммы моментов
- 2. определения направления действия сил
- 3. определения ускорений

4. определения усилий в отдельных стержнях фермы

18. Сила трения при скольжении твердых тел зависит от:

- 1. свойств поверхностей
- 2. силы давления
- 3. скорости движения
- 4. Свойств поверхностей, силы давления, скорости движения.

19. Если однородное тело имеет плоскость симметрии, то центр тяжести его находится:

- 1. в этой плоскости
- 2. на удалении 20 см. от плоскости
- 3. под углом 30 град.к оси симметрии
- 4. нет правильного ответа

20. Вектор угловой скорости при вращательном движении твердого тела?

1.
$$\omega = \frac{d\varphi}{dt}$$

2.
$$\varepsilon = \frac{d\varphi}{dt}$$

3.
$$\varepsilon = \frac{d\varphi}{dz}\bar{k}$$

4.
$$\varepsilon = \frac{d\varphi}{dx}\bar{k}$$

Ответы на тест №2

Вопрос	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ответ	1	1	3	1	2	1	1	4	5	1	5	4	1	1	1	1	4	4	1	1

Тест №3

1. Механическое движение – это:

1. изменение положения тел (или частей тела) относительно

друг друга в пространстве с течением времени

- 2. сумма всех моментов
- 3. реакции опор
- 4. нет правильного ответа

2. Поступательным называется движение тела, при котором:

- 1. прямая, проходящая через любые две точки тела, перемещается, оставаясь перпендикулярной самой себе.
- 2. прямая, проходящая через любые две точки тела, перемещается, оставаясь параллельной самой себе
- 3. прямая, проходящая через любые две точки тела, перемещается, оставаясь равной сумме всех сил
 - 4. нет правильного ответа

3. Скорость (вектор) точки твердого тела при вращательном движении вокруг неподвижной оси?

- 1. $\varepsilon = \frac{d\overline{\omega}}{dt}$
- 2. $\overline{V} = \varpi \overline{r}$
- 3. $\overline{V} = \overline{r} \boldsymbol{\omega}$
- 4. $\overline{V} = \varpi h$
- 5. $\overline{V} = \boldsymbol{\varpi} \times \overline{r}$

$$x = 2sin2t$$
, **4.** Данные уравнения задают $y = 3cos2t$.

- 1. Движение точки
- 2. Относительное ускорение
- 3. Равновесие системы
- 4. Кориолисово движение

5. Вектор углового ускорения при вращательном движении твердого тела?

$$1. \quad \omega = \frac{d\phi}{dt}$$

$$2. \quad \varepsilon = \frac{d\overline{\omega}}{dx}$$

$$3. \quad \varepsilon = \frac{d\overline{\omega}}{dy}$$

4.
$$\varepsilon = \frac{d\overline{\omega}}{dt}$$

5.
$$\varepsilon = \frac{d\overline{\omega}}{dz}$$

6. Равнодействующая двух сил вычисляется по формуле:

1.
$$R = \sqrt{P_1^2 + P_2^2 - 2P_1P_2\cos(P_1P_2)}$$

2.
$$R = \sqrt{P_1^2 + P_2^2 + 2P_1P_2\cos(P_1P_2)}$$

3.
$$\overrightarrow{R} = \overrightarrow{P}_1 - \overrightarrow{P}_2$$

4.
$$R = P_1 + P_2$$

4.
$$R = P_1 + P_2$$

5. $R = \sqrt{P_1 + P_2 - 2P_1P_2\cos\gamma}$

7. При каком условии можно рассматривать несвободное тело как свободное?

- 1. если отбросить связи и заменить их действие реакциями
- 2. при полном затвердении исследуемого деформируемого телаесли отбросить или добавить наложенные связи и заменить их активными силами
 - 3. если убрать все ограничения
- 4. если все активные силы, приложенные к телу, заменить реакциями наложенных связей

8. Как определяется средняя скорость?

$$1. \quad \overline{V}_{CP} = \frac{\Delta \overline{r}}{\Delta t}$$

$$2.\,\overline{V}_{CP} = \frac{\Delta \overline{a}}{\Delta \overline{V}}$$

$$3. \overline{V}_{CP} = \frac{\Delta \overline{V}}{\Delta \overline{a}}$$

$$4.\,\overline{V}_{opm} = \frac{\Delta\overline{\varphi}}{\Delta t}$$

$$5.\overline{V}_{opm} = \frac{\Delta a}{\Delta t}$$

9. Теоретическая механика – наука о:

1. *наука* наиболее общих законах движения u взаимодействия материальных тел, а также равновесия твердых тел

- 2. наука о движении тел
- 3. теоретическая механика наука о равновесии твердых тел
- 4. наука о равновесии твердых тел, о взаимодействии упругих

тел

5. наука о взаимодействии упругих тел, о движении небесных

тел

10. Среднее ускорение точки равно:

1.
$$\bar{a}_{CP} = \frac{\Delta \bar{S}}{\Delta t}$$

$$2. \ \overline{a}_{opm} = \frac{\Delta \overline{V}}{\Delta S}$$

$$3. \ \overline{a}_{CP} = \frac{\Delta \overline{V}}{\Delta t}$$

4.
$$\overline{a}_{opm} = \frac{\Delta t}{\Delta S}$$

5.
$$\overline{a}_{opm} = \frac{\Delta \overline{r}}{\Delta t}$$

11. Как направлен вектор силы тяжести тела?

- 1. вверх по углом 30°
- 2. по горизонтали
- 3. по вертикали вниз из середины тел
- 4. по нормали
- 5. по касательной

12. Как направлена сила трения?

1. в противоположную сторону движения вдоль

поверхности

- 2. вниз
- 3. вверх
- 4. по касательной
- 5. никак

13. Как направлена сила упругости пружины?

- 1. вдоль пружины против действия
- 2. направлены вверх по касательной
- 3. направлены вниз
- 4. в любую сторону

5. против силы тяжести

14. Свободное падение - это движение тела под:

- 1. действием только силы тяжести.
- 2. действием крутящего момента
- 3. действием изгибающего момента
- 4. действием сходящихся сил
- 5. действием инерции

15. От высокой скалы откололся и стал свободно падать камень. Какую скорость он будет иметь через 3 с после начала падения?

- 1. 30 m/c;
- 2. 10 m/c;
- 3. 3 m/c:
- 4. 2 m/c
- 5. нет правильного ответа

16. Второй закон Ньютона:

1.
$$m \frac{d\overline{V}}{dt} = \sum \overline{F}_K$$

2.
$$m = \frac{d\overline{\varphi}}{dt} = m_0(\overline{F}_k)$$

$$3 \quad m\bar{\varepsilon} = \sum \overline{F}_K$$

4. нет правильного ответа

17. Второй закон Ньютона:

- 1. $\overline{F} = m\overline{a}$
- 2. $G = md\overline{g}$
- 3. $\overline{F} = ml\overline{a}$
- 4. P = mw
- 5. Нет правильного ответа

18. Плоскопараллельным (или плоским) называется такое движение твердого тела, при, котором:

- 1. его точки перемещаются в хаотическом порядке
- 2. все его точки перемещаются параллельно некоторой фиксированной плоскости П
 - 3. его точки перемещаются относительно центра

- 4. все его точки находятся в состоянии покоя
- 5. нет правильного ответа
- 19. «Изолированная от внешних воздействий материальная точка сохраняет свое состояние покоя или равномерного прямолинейного движения до тех пор, пока приложенные силы не заставят ее изменить это состояние». Это первый закон:
 - 1. Павлинова
 - 2. Галилея
 - 3. Гаусса
 - 4. Ньютона
 - 3. сохранения энергии

20. Движение, совершаемое точкой при отсутствии сил, называется:

- 1. Кориолисовым движением
- 2. Броуновским движением
- 3. Хаотичным движением
- 4. Движением по инерции.
- 5. нет правильного ответа

Ответы на тест №3

Вопрос	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ответ	1	2	5	1	4	4	1	1	1	3	3	1	1	1	1	4	1	2	4	4

Тест №4

- 1. Произведение массы точки на ускорение, которое она получает под действием данной силы, равно по модулю этой силе, а направление ускорения совпадает с направлением силы». Это второй закон:
 - 1. Павлинова
 - 2. Галилея
 - 3. Гаусса
 - 4. Ньютона
 - 3. Сохранения энергии

2. Третий закон Ньютона. Где правильно указано значение силы?

- $\overline{\mathbf{I}}_{1} = -\overline{F}_{2}$
- 2. $\overline{F} = -m\overline{a}$
- 3. $\overline{F} = m\overline{a}$
- 4. $\overline{G} = m/a$
- 5. $\overline{F} = m\overline{g}$

3. Дифференциальное уравнение свободной материальной точки?

- 1. $m\frac{d\overline{V}}{dt} = \sum \overline{F}_K$
- 2. $m = \frac{d\overline{\varphi}}{dt} = m_0(\overline{F}_k)$
- 3. $m\bar{\varepsilon} = \sum \bar{F}_K$
- 4. $\overline{F} = m\overline{a}$
- 5. $G = m\overline{g}$

4. Зная закон движения точки, определить действующую на нее силу – это:

- 1. первая задача динамики
- 2. пятая задача алгебры
- 3. просто задача
- 4. восьмая задача статики
- 5. нет правильного ответа

5. Масса механической системы

- 1. $\overline{V} = mg$
- 2. $\overline{Q} = m\overline{a}$
- 3. $M = \frac{G}{g}$
- 4. M = mg
- $5. \quad M = \sum m_k$

6. Количество (вектор) движения материальной точки?

- 1. $\overline{q} = m\overline{V}$
- 2. $\overline{Q} = m\overline{a}$
- 3. $\overline{q} = m\overline{a}$

1	\overline{V}	_	ma
4.	V	=	mg

5.
$$m = \overline{V}q$$

7. Направление вектора количества движения материальной точки?

- 1. $\bar{q}//\bar{V}$
- 2. $\bar{q}//\bar{a}$
- 3. $\bar{q}//\bar{r}$
- 4. $\bar{q}\perp\bar{V}$
- 5. $\bar{q}\perp\bar{r}$

8. Величина, определяющая работу, совершаемую силой в единицу времени называется

- 1. скоростью
- 2. работой
- 3. мощностью
- 4. силой тяжести
- 5. ускорением

9. Зная действующие на точку силы, определить закон движения точки — это:

- 1. Вторая или основная задача динамики
- 2. первая задача динамики
- 3. эпюра Монжа
- 4. теорема Пуанкаре
- 5. ускорение свободного падения

10. Вектор количество движения механической системы?

- 1. $\overline{Q} = M\overline{V_c}$
- 2. $\overline{Q} = M\overline{R}$
- 3. $\overline{Q} = M\overline{V}$
- $4. \quad \overline{q} = M\overline{V_c}$
- 5. $\overline{q} = m/\overline{V}$

11. Теорема об изменении количества движения точки в дифференциальной форме

$$\frac{d\overline{q}}{dt} = \overline{F}$$

- $2. \qquad \frac{d\overline{Q}}{dt} = \overline{M}$ 2. aa $m\frac{d\overline{q}}{dt} = \overline{F}$ 3. $m\frac{d\overline{r}}{dt} = \overline{F}$ 4. $m\frac{d\overline{V}}{dt} = \overline{F}$ 5. $m\frac{d\overline{V}}{dt} = \overline{F}$

12. Четвертый закон (закон независимого действия сил):

- 1. При одновременном действии на материальную точку нескольких сил ускорение точки относительно инерционной системы отсчета от действия каждой отдельной силы не зависит от наличия других, приложенных к точке, сил и полное ускорение равно векторной сумме ускорений от действия отдельных сил.
- 2. При одновременном действии на материальную точку нескольких сил ускорение точки относительно инерционной системы отсчета от действия каждой отдельной силы зависит от наличия других, приложенных к точке, сил и полное ускорение равно векторной сумме ускорений от действия отдельных сил
- 3. При одновременном действии на материальную точку нескольких сил ускорение точки относительно инерционной системы отсчета от действия каждой отдельной силы не зависит материальной точки.
- 4. При одновременном действии на материальную точку нескольких сил ускорение точки относительно инерционной системы отсчета от действия каждой отдельной силы не зависит от наличия других, приложенных к точке, сил.

13. Каждому действию есть противодействие?

- 1. равное по модулю и противоположное по направлению
- 2. не равное по модулю, но противоположное по направлению
- 3. равное по модулю и одинаковые по направлению
- 4. равное по величине и перпендикулярно по направлению
- 5. равное по модулю, но направленное параллельно

14. Число уравнений равновесия в плоской произвольной системе сил?

- 1. 5
- 2. 6

- 3. 3
- 4. 4
- 5. 7

15. Масса механической системы?

$$M = \sum_{k=1}^{n} m_k$$

$$m = \sum M$$

- $m = \sum M$ 2.
 3. $M = m_1 m_2 m_3$
- $4. \quad M = M_1 M_n$

16. Найдите формулу естественного способа задания движения?

- 1. $\bar{r} = \bar{r}(t)$
- 2. x = x(t)
- 3. y = y(t)
- 4. z = z(t)
- 5. S = f(t)

17. Что называется, абсолютно твердым телом?

- 1. тело, расстояние между любыми двумя точками которого остаются постоянными
 - 2. твердое тело, размеры которого очень мало изменяются
- 3. тело, форма которого очень мало меняется, а расстояние между точками постоянно
- 4. тело, расстояние между точками которого мало меняется, а форма тела остается постоянной
 - 5. правильного ответа среди указанных нет

18. Кинетическая энергия материальной точки?

1.

$$T = \frac{1}{2}mV^2$$

$$T = \frac{1}{3}mV^3$$

2.
$$T = \frac{1}{2}mV^{2}$$
3.
$$T = \frac{1}{3}mV^{3}$$
4.
$$T = \frac{1}{2}mV_{2}$$
5.
$$T = \frac{1}{2}j\omega^{2}$$

$$T = \frac{1}{2}j\omega^2$$

$$T = \frac{1}{3}j^2\omega$$

19. Какой вектор представляет собой силу?

- 1. Нескользящий
- 2. Постоянный
- 3. Связанный
- 4. Свободный
- 5. направленный

20. Выбрать правильные уравнения равновесия произвольно плоской системы?

ВВОЛЬНО ПЛОСКОИ СИ
$$\begin{cases} \sum F_{kx} = 0, \\ \sum F_{ky} = 0, \\ \sum m_0(F_k) = 0, \end{cases}$$
1.
$$\begin{cases} \sum F_{xx} = 0, \\ \sum F_{xy} = 0, \\ \sum (F_{xy}) = 0, \end{cases}$$
2.
$$\begin{cases} \sum F_{xx} = 0, \\ \sum m_x(F_x) = 0, \\ \sum m_y(F_x) = 0, \end{cases}$$
3.
$$\begin{cases} \sum m_x(F_x) = 0, \\ \sum m_y(F_x) = 0, \\ \sum m_z(F_x) = 0, \\ \sum m_C(F_x) = 0, \end{cases}$$
4.
$$\begin{cases} \sum m_C(F_x) = 0, \\ \sum m_C(F_x) = 0, \\ \sum m_C(F_x) = 0, \end{cases}$$
5.

Ответы на тест №4

Вопрос	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ответ	4	3	1	1	5	1	1	3	1	4	1	1	1	3	1	5	1	1	5	1

Критерии оценки:

- оценка «отлично» выставляется студенту, если процент правильных ответов составляет 90-100%;
- оценка «хорошо» выставляется студенту, если процент правильных ответов составляет 60–89%;
- оценка «удовлетворительно» выставляется студенту, если процент правильных ответов составляет 30–59%;
- оценка «неудовлетворительно» выставляется студенту, если процент правильных ответов составляет 0–29%.

Ст. преподаватель

П.С. Цвинкайло

10 сентября 2019 г.

Государственное образовательное учреждение высшего образования «ПРИДНЕСТРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени Т.Г. Шевченко»

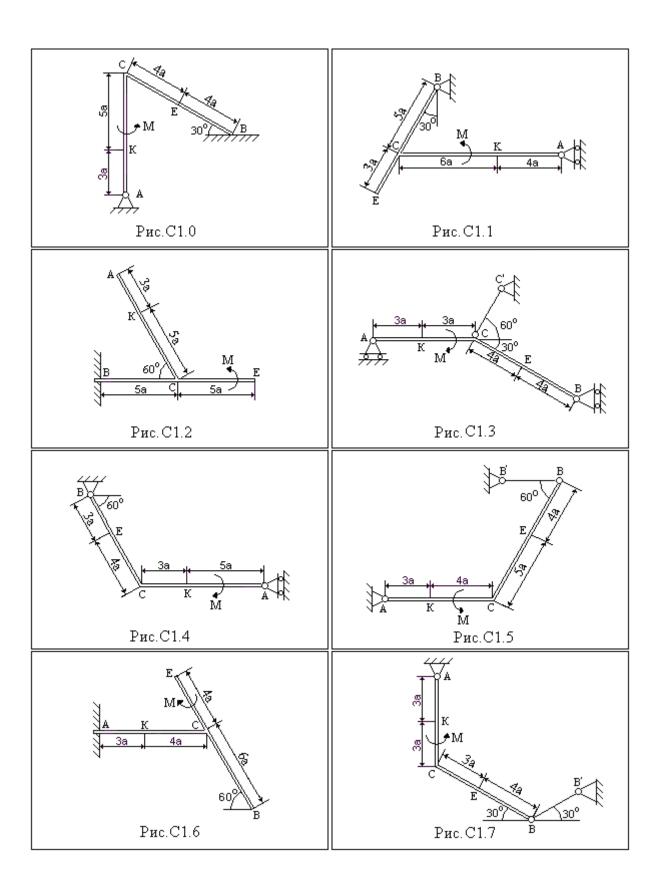
филиал ПГУ им. Т.Г. Шевченко в г. Рыбница

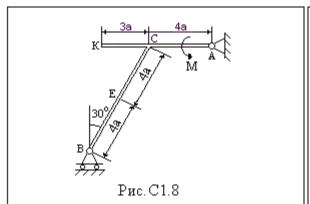
Кафедра «Автоматизации технологических процессов и производств»

Комплект заданий для контрольной работы

по дисциплине «Теоретическая механика»

Контрольная работа №1 Часть 1. СТАТИКА


Задание С1. Определение реакций опор балки.


- Конструкция, состоящая из двух прямолинейных стержней жестко скрепленных между собой в точке C, расположена в вертикальной плоскости.
- На конструкцию действует пара сил с моментом $\mathbf{M} = \mathbf{100} \ \mathbf{\kappa H \cdot m}$, распределенная нагрузка интенсивности $\mathbf{q} = \mathbf{20} \ \mathbf{\kappa H / m}$ и одна сила.
- Величина этой силы, ее направление и точка приложения указаны в таблице **C1**.
- Там же в столбце "Нагруженный участок" указано, на каком участке действует распределенная нагрузка.
- Направление распределенной нагрузки на различных по расположению участках указано в таблице **C1a**.

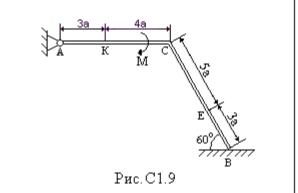

Определить реакции связей конструкции, вызванные заданными нагрузками. При расчетах принять а = 0,2 м.

Таблица С1

Расчётные схемы

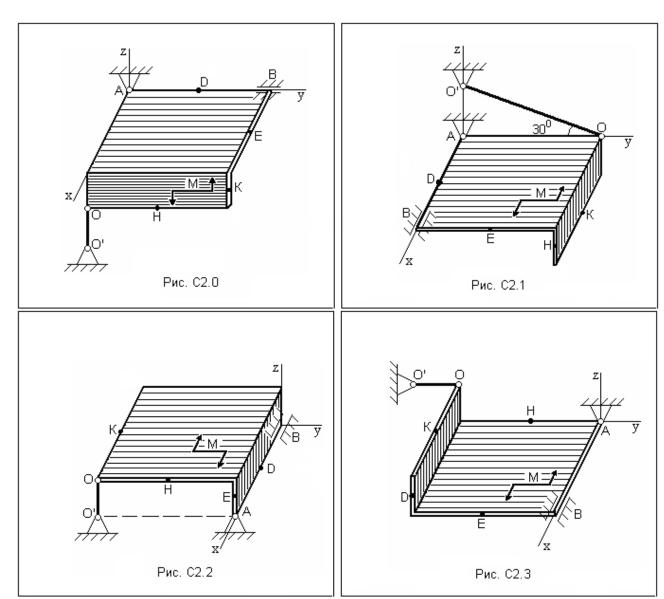
Нагруженный участок

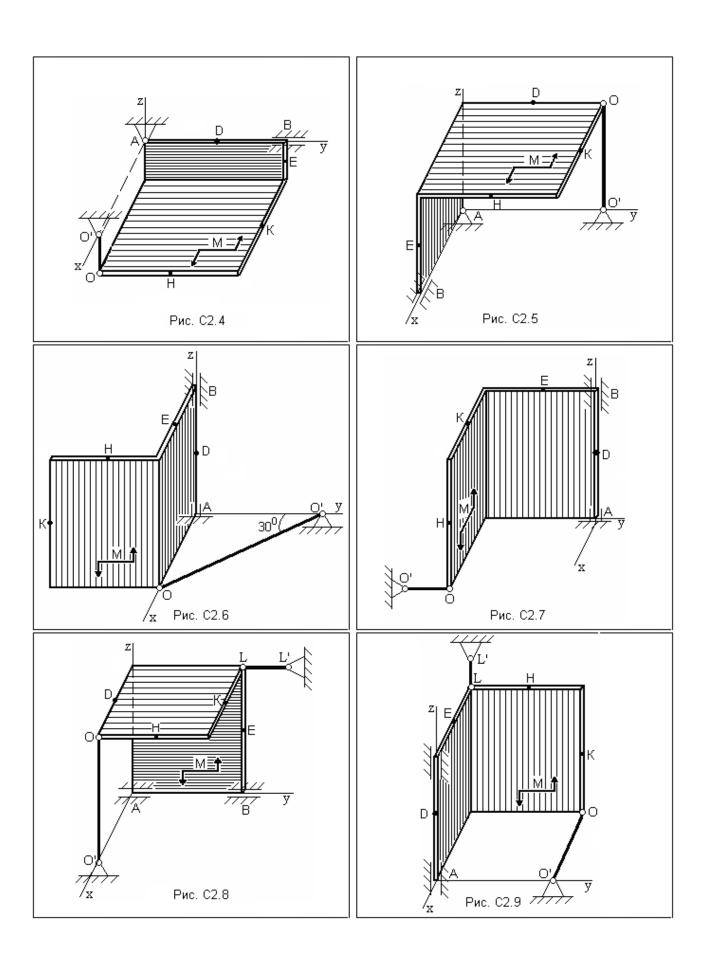
	Участок н	а стержне	
горизонтальный	вертикальный	наклонный	наклонный
			

Действующие силы

Таблица С.1а

Сила	A	≯ F₁	F ₂		-23 F3	7	V	√4 ∑ _{F4}	
	$F_1 = 1$	10ĸH	$F_2 = 3$	20ĸH	$F_3 = 1$	30кН	F ₄ = 4	40ĸH	
Но мер условия	Точка приложения	a₁rpaq	Точка приложения	as rpan	Точка приложения	аз град	Точка приложения	a, rpag	Натруженный участок
0	К	60	-	-	-	-	-	-	CE
1	-	-	-	-	-	-	E	30	CK
2 3 4 5	-	-	-	-	E	60	-	-	AC
3	-	-	K	30	-	-	-	-	CE
4	К	30	-	-	-	-	-	-	CB
	-	-	E	45	-	-	-	-	AK
6	E	60	-	-	-	-	-	-	CK
7	-	-	-	-	E	30	-	-	AK
8	-	-	K	30	-	-	-	-	BE
9	-	-	-	-	-	-	К	60	BC


Задание С2. Определение реакций опор угольника.


- Две однородные прямоугольные пластины, приваренные под прямым углом друг к другу, образуют угольник, который закреплен с помощью различного типа связей в точках A, B, O (на рис. C2.8 и C2.9 еще и в точке L).
- Размеры пластин в направлениях, параллельных координатным осям **x**, **y**, **z** равны соответственно или 2ℓ , 3ℓ и ℓ (рис.C2.0 C2.4), или 2ℓ , 3ℓ и 4ℓ (рис. C2.5 C2.9).
 - Вес одной из пластин равен $G_1 = 5 \text{ кH}$, вес второй $G_2 = 2 \text{ кH}$.
- Каждая из пластин расположена параллельно одной из координатных плоскостей (плоскость **ху** горизонтальная).
- На пластины действуют: пара сил с моментом $\mathbf{M} = \mathbf{10} \ \mathbf{\kappa} \mathbf{H} \cdot \mathbf{m}$, лежащая в плоскости одной из пластин, и две силы. Величины этих сил, их направления и точки приложения указаны в таблице C2; при этом силы \overline{F}_1 и \overline{F}_4 лежат в плоскостях, параллельных плоскости $\mathbf{x}\mathbf{y}$, сила \overline{F}_2 в плоскости параллельной хz, и сила \overline{F}_3 в плоскости, параллельной уz.
- Точки приложения сил (D, E, H, K) находятся в углах или в серединах сторон пластин.

Определить реакции связей. При расчетах принять $\ell = 0,5$ м. Толщиной пластин пренебречь.

Таблица С2

Расчётные схемы

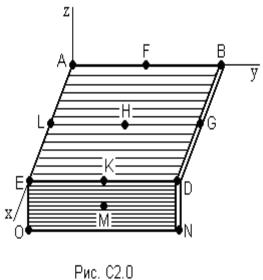
Действующие силы

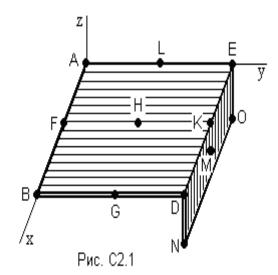
Силы	X	у _{F1}	z z	\overline{F}_2	z Z	√ ₃ y √ _{F₃}	F ₄	у
	$F_1 = 1$	10ĸH	$F_2 = 2$	20ĸH	F3=	30ĸH	F ₄ =	40кН
Номер условия	Точка приложения	a₁ град	Точка приложения	а, град	Точка приложения	аз град	Точка приложения	а₄ град
0 1 2 3 4 5 6 7 8	E . K . H . D .	60 - 30 - 0 - - 30 -	но екн о	30 60 - - 30 60 90 - - 90	- ЕКО ОНК -	- 30 60 0 - - 30 60 0	- E - D - - K - H	- 30 - 60 - - 90 - 30

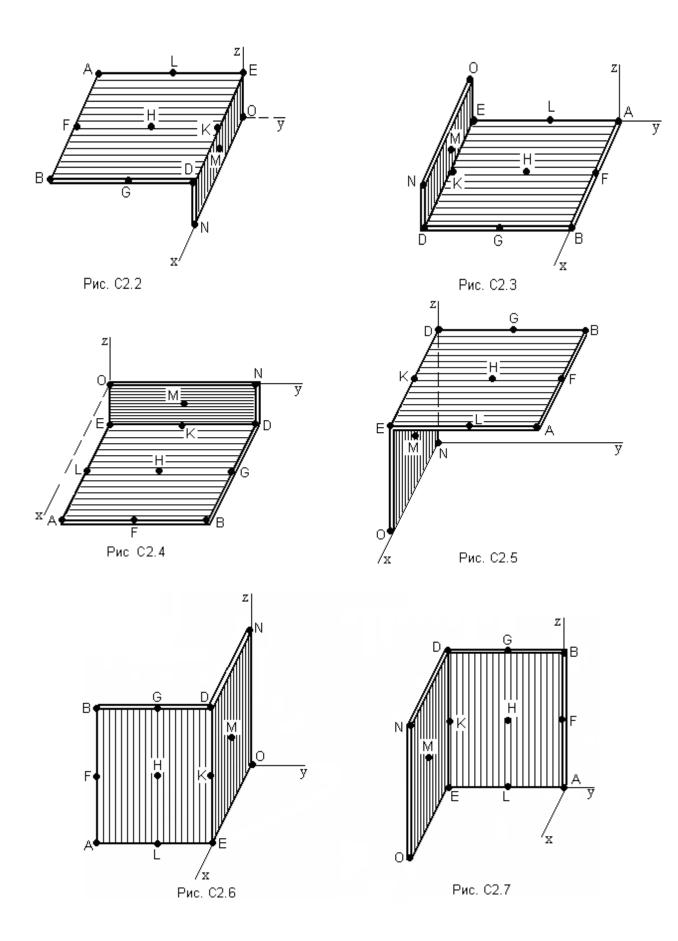
Задание С3. Определение центра тяжести фигуры

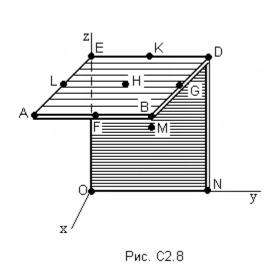
- Две однородные прямоугольные пластины, приваренные под прямым углом друг к другу, образуют угольник.
- Размеры пластин в направлениях, параллельных координатным осям \mathbf{x} , \mathbf{y} , \mathbf{z} равны соответственно или 2l, 3l и l (рис. $\mathbf{C2.0}$ $\mathbf{C2.4}$), или 2l, 3l и 4l (рис. $\mathbf{C2.5}$ $\mathbf{C2.9}$).
- Силы тяжести большей и меньшей пластин (рис.С2.0 С2.4) соответственно равны 5 кH и 2 кH,
- Для рис. C2.5 C2.9 силы тяжести пластин одинаковы и равны 4 кH.
- Каждая из пластин расположена параллельно одной из координатных плоскостей (плоскость ху горизонтальная).

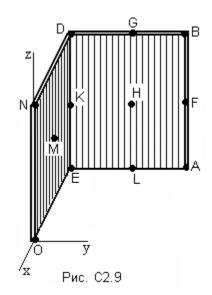
- Из угольника вырезана фигура в виде треугольника, расположение которого обозначено точками (таблица СЗ), точки находятся по краям или в серединах сторон пластин. Вычислить координаты центра тяжести угольника с вырезом для обозначенных на рисунках систем координат. При расчетах принять $l = 0,5 \, M$.
 - Толщиной пластин пренебречь.


Вырезанный участок


Таблица С 3


•М усповия	0	1	2	3	4	5	б	7	8	9
Вырезан треуголь- ник	ALF	FGB	GDK	KLE	ОМИ	DNM	EOM	EON	AHE	BHD


Таблица С За


Расчётные схемы

Контрольная работа №2

Часть 2. КИНЕМАТИКА

Задание К1 Определение кинематических характеристик движения материальной точки

По заданным уравнениям движения точки $x = f_1(t), y = f_2(t)$ найти:

- уравнение траектории точки, для момента времени $t_1 = 1 c$
- вычислить ее скорость,
- вычислить нормальное, касательное и полное ускорения, а также
- вычислить радиус кривизны траектории.
- на рисунке в масштабе изобразить траекторию движения точки и для заданного момента времени $t_I = 1 \ c$
 - построить векторы скорости и ускорения.

Уравнения движения точки $x = f_1(t)$ указаны на соответствующих рисунках, а уравнения движения $y = f_2(t)$ приведены в таблице K1a (для рис. 0-2-6 столбце 2, для рис. 3-6-6 столбце 3, для рис. 7-9-6 столбце 4; величины x и y измеряются 6 см, время 6 секундах).

Таблица К1

Уравнение движения $x = f_I(t)$

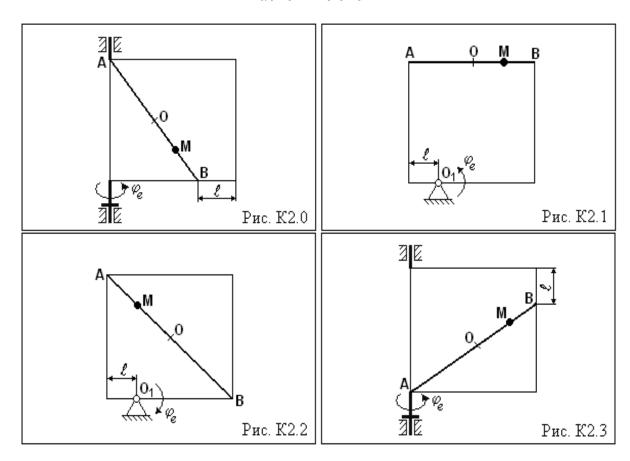
Уравнение движения $y = f_2(t)$

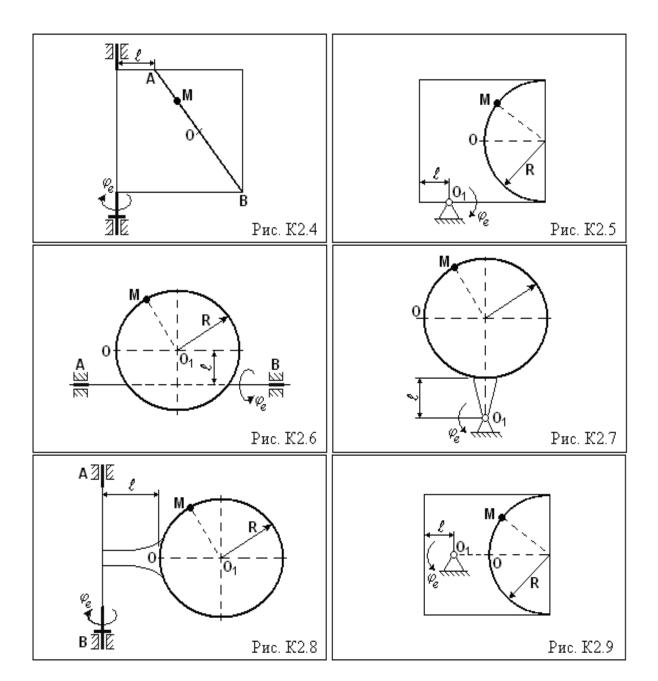
Таблица К1а

 $y = f_2(t)$ Номер условия рис. 3, 4, 5, 6 рис. 0, 1, 2 рис. 7, 8, 9 $3-4\cos^2\frac{\pi t}{2}$ $t^{2} - 2$ $2 - 3\cos^2 \pi t$ 0 $1 + 4 \sin \frac{\pi t}{4}$ $1 + 3\sin^2\frac{\pi t}{6}$ t² - 4 1 $3\cos\frac{\pi t}{4}$ $5\cos\frac{\pi t}{3}$ 5 - 2 t 2 $-\,4\,\sin^2\,\frac{\pi t}{4}$ $-2 \sin \frac{\pi t}{2}$ 4 + 2t3 $4-3\cos\frac{\pi t}{2}$ $(t+3)^2$ $(t+1)^2$ 4 $-1-4\sin \frac{\pi t}{4}$ $-1-3\sin\frac{\pi t}{6}$ 5 -1-2 sin πt $3 t^2$ $-2 + 3\cos$ 4 - 3 t 6 $3-2\cos^2\frac{\pi t}{4}$ $3 - 3\cos \frac{\pi t}{6}$ $3 - 4\cos^2 \frac{\pi t}{2}$ 7 $2-4\cos\frac{\pi t}{}$ 8 $2 + 3\cos \pi t$ $2+3\ t^2$

9	$-3+2\cos\frac{\pi t}{2}$	- 3 t + 2	$-3+2\cos\frac{\pi t}{2}$
---	---------------------------	-----------	---------------------------

Задание К2


- Тело (**квадрат** со сторонами **10 см** или д**иск** радиуса **R** = **5 см**) вращается вокруг неподвижной оси по закону $\varphi_e = f_1(t)$.
- По желобу, имеющему прямолинейную форму или форму дуги окружности (на рисунках **желоб выделен жирной линией**), движется материальная точка **M** по закону
 - **OM** = $S_r = f_2(t)$.
- На расчётных схемах $\mathbf{K2.0} \mathbf{K2.4}$ (таблица $\mathbf{K2}$) точка \mathbf{O} находится посередине прямой \mathbf{AB} , точка \mathbf{M} показана в положении, при котором $\mathbf{Sr} > \mathbf{0}$;
- положительное направление отсчета угла φ_e указано круговой стрелкой, расстояние \boldsymbol{l} задано в таблице в **сантиметрах.**


Найти абсолютные скорость и ускорение точки M для заданного момента времени $t=t_1$.

– Числовые данные приведены в таблице **К2а.**

Таблица К2

Расчётные схемы

Расчётные параметры

Таблица К2

Номер	$\varphi_e = f_1(t)$	$S_r = f_2(t) [cM]$	$S_r = f_2(t) [cM]$	Время	Расстояние
условия	[<i>pa∂</i>]	для рис. К2.0 – К2.4	для рис. К2.5 – К2.9	t [<i>ceκ</i>]	ℓ [см]
0	$4t^2$ -2t	$10 \left[\frac{1}{2} - \cos \left(\pi t/3 \right) \right]$	$\pi R \frac{\sqrt{2}}{2} \sin{(\pi t/2)}$	$\frac{1}{2}$	1
1	2t- 4t ²	$10 \left[\frac{3}{4} - \sin \left(\pi t/6 \right) \right]$	$\pi R \frac{\sqrt{2}}{4} \cos{(\pi t/4)}$	1	2
2	t^3-3t^2	$18 \left[\frac{\sqrt{2}}{2} \sin (\pi t/4) - \frac{1}{3} \right]$	$\pi R\left[\frac{2}{3} - \sin\left(\pi t/6\right)\right]$	1	0
3	t+ 5t ²	$15 [\cos{(\pi t)} - \frac{2}{3}]$	$\pi R[\cos{(\pi t)} - \frac{5}{6}]$	$\frac{1}{3}$	3

4	2t -3t ²	$20 \left[\frac{2}{3} - \sin \left(\pi t/3 \right) \right]$	$\pi R\left[\frac{3}{4} - \frac{\sqrt{2}}{2}\sin\left(\pi t/2\right)\right]$	$\frac{1}{2}$	4
5	$3t+2t^2$	8 [sin ($\pi t/6$) – $\frac{1}{2}$]	$\pi R[\cos(\pi t/6) - \frac{2}{3}]$	2	1
6	t -2t ³	$10\left[\frac{5}{6} - \cos\left(\pi t/3\right)\right]$	$\pi R \frac{\sqrt{2}}{2} \sin (\pi t/4)$	1	2
7	$-t^2 + 3t$	$10\frac{\sqrt{2}}{2}\sin\left(\pi t/2\right)$	$\pi R\left[\frac{2\sqrt{3}-1}{4}-\cos\left(\pi t/3\right)\right]$	$\frac{1}{2}$	0
8	4t -3t ²	$18 \left[\cos{(\pi t/6)} - \frac{2}{3}\right]$	$\pi R[\sin(\pi t/6) - \frac{3\sqrt{3} + 2}{6}]$	2	3
9	2t ² -5t	$-10\cos{(2\pi t)}$	$\pi R[\frac{2}{3} - \cos{(2\pi t)}]$	$\frac{1}{6}$	4

Критерии оценки:

- оценка «отлично» выставляется студенту, если работа выполнена правильно, оформлена в соответствии с требованиями ЕСКД, значения скоростей и ускорений выполнены на планах скоростей и ускорений в масштабе, правильно подписан штамп;
- оценка «хорошо» выставляется студенту, если работа выполнена правильно, значения скоростей и ускорений выполнены на планах скоростей и ускорений в масштабе, правильно подписан штамп;
- имеются расхождения требованиям ЕСКД, не соблюдены размеры на планах скоростей и ускорений, правильно подписан штамп;
- оценка «удовлетворительно» выставляется студенту, если работа выполнена правильно, оформление не соответствует требованиям ЕСКД, не соблюдены размеры на планах скоростей и ускорений, правильно подписан штамп;
- оценка «неудовлетворительно» выставляется студенту, если работа выполнена не правильно, независимо от оформления.

Ст. преподаватель

П.С. Цвинкайло

10 сентября 2019 г.

«	2019 г.
доцент	В.Е.Федоров
производств»	
технологических	процессов и
зав. кафедрой «А	втоматизация
«УТВЕРЖДАЮ»	•

Темы курсовых работ по дисциплине «Теоретическая механика» для студентов I курса (0/0, 3/0) направления «Автоматизация технологических процессов и производств», профиля подготовки

«Автоматизация технологических процессов и производств» II семестр

- 1. Исследование равновесия и движения механических систем (по вариантам)
 - 2. Статика, кинематика, динамика двухступенчатого манипулятора
- 3. Интегрирование дифференциальных уравнений движения материальной точки.
- 4. Исследование движения механических систем с двумя степенями свободы
- 5. Исследование кинематических и динамических характеристик механических систем
 - 6. Исследование колебаний систем
- 7. Определение реакция опор составных конструкций с внутренними односторонними связями
 - 8. Постулаты движения твердого тела
 - 9. Применение основных теорем движения механических систем
 - 10. Расчёт колебания механических систем с одой степенью свободы
 - 11. Расчёт конструкций и физических величин.

Составитель: ст. преподаватель	П.С. Цвинкайло
--------------------------------	----------------

«УТВЕРЖДАЮ»	
вав. кафедрой «А	втоматизация
гехнологических	процессов и
производств»	
цоцент	В.Е.Федоров
<»	2019 г.

Вопросы к зачёту по дисциплине «Теоретическая механика» для студентов I курса (3/0)

направления «Автоматизация технологических процессов и производств»,

профиля подготовки

«Автоматизация технологических процессов и производств» II семестр

Раздел «СТАТИКА»

- 1. Аксиомы статики. Связи и реакции связей.
- 2. Сходящаяся система сил. Геометрическое сложение. Условие равновесия сходящейся системы сил.
- 3. Аналитическое сложение системы сходящихся сил. Теорема о равновесии трех непараллельных сил.
- 4. Моменты силы относительно точки и оси.
- 5. Проекция равнодействующей силы на оси. Теорема Вариньона о моменте равнодействующей силы.
- 6. Система параллельных сил. Пара сил и ее свойства.
- 7. Теорема об эквивалентности двух пар сил, расположенных в одной плоскости.
- 8. Теорема о переносе пары сил в параллельную плоскость.
- 9. Теорема о сложении моментов сил, составляющих пару. Сложение пары сил.
- 10. Приведение силы к центру. Основная теорема статики о приведении сил к центру.
- 11. Частные случаи приведения сил к простейшему виду. Условия и уравнения равновесия произвольной системы сил.
- 12. Расчет ферм: понятие о ферме; условие статической неопределимости и геометрической неизменяемости ферм; предпосылки расчета ферм; порядок расчета ферм.

- 13. Методы расчета реакций в стержнях ферм: метод вырезания узлов; метод сечений (Риттера).
- 14. Центр параллельных сил.
- 15. Центр тяжести твердого тела. Координаты центра тяжести однородных тел.
- 16. Методы нахождения центра тяжести.

Составитель: ст. п	реподаватель	П.С. І	Івинкайло
COULUBITIONE. CI. II	реподаватель	11.0	421111110011011

«УТВЕРЖДАЮ»	
вав. кафедрой «А	втоматизация
гехнологических	процессов и
производств»	
цоцент	В.Е.Федоров
<	2019 г.

Вопросы к экзамену по дисциплине «Теоретическая механика» для студентов II курса (0/0, 3/0) направления «Автоматизация технологических процессов и производств»,

профиля подготовки

«Автоматизация технологических процессов и производств» III семестр

Раздел «КИНЕМАТИКА»

- 1. Естественный способ задания движения точки. Определение скорости и ускорения точки.
- 2. Координатный способ задания движения точки. Определение скорости и ускорения точки.
- 3. Векторный способ задания движения точки. Определение скорости и ускорения точки.
- 4. Равномерное и равнопеременное движение точки.
- 5. Поступательное движение тела. Определение, теорема, следствие.
- 6. Вращение твердого тела вокруг неподвижной оси. Определение. Задание движения.
- 7. Определение линейных и угловых скоростей. Векторные формулы для определения скорости и ускорения точки.
- 8. Равномерное и равнопеременное вращение тела.
- 9. Естественный способ задания движения точки. Определение скорости и ускорения точки.
- 10. Сложное движение точки. Теоремы о сложении скоростей и ускорений.
- 11. Кориолисово ускорение. Правило Жуковского.
- 12. Плоскопараллельное движение тела. Определение. Теорема 1 (определение скоростей и ускорений точек тела).
- 13. Теорема 2 (о проекции скоростей). Теорема 3 (Шаля). Следствия.
- 14. Мгновенный центр скоростей. Частные случаи определения мгновенного центра скоростей.
- 15. Формулы сложения скоростей и ускорений в плоском движении тела.

- 16. Мгновенный центр ускорений. Частные случаи определения положения мгновенного центра ускорений.
- 17. Передаточные механизмы. Схемы простейших передаточных звеньев механизмов.

Раздел «ДИНАМИКА»

- 1. Динамика точки и системы материальных точек. Инерциальные и неинерциальные системы отсчета. Законы Ньютона.
- 2. Количество движения (импульс), момент количества движения (кинетический момент), кинетическая энергия точки и системы материальных точек. Изменение кинетического момента при изменении полюса.
- 3. Центр масс. Кёнигова система, ее применение для подсчета кинетического момента и кинетической энергии системы материальных точек (теоремы Кёнига). Внешние и внутренние силы. Момент силы, работа силы.
- 4. Основные теоремы динамики для системы материальных точек. Теоремы об изменении количества движения, кинетического момента, кинетической энергии для точки и системы материальных точек. Законы сохранения.
- 5. Потенциальные, гироскопические, диссипативные силы. Критерий потенциальности сил. Потенциальная энергия. Консервативные системы, закон сохранения полной энергии.
- 6. Теоремы динамики в неинерциальных системах отсчета. Переносные и кориолисовы силы инерции. Задача Охоцимского—Энеева. Влияние вращения Земли на свободное движение точки. Циклоны и антициклоны. Маятник Фуко.
- 7. Применение законов динамики к системам переменного состава. Уравнение Мещерского.
- 8. Движение материальной точки в центральном поле. Законы сохранения. Интегрирование уравнений движения в квадратурах, случаи аналитической интегрируемости (степенная зависимость потенциальной энергии от радиуса).
- 9. Общие свойства движения. Законы Кеплера. Интеграл Лапласа.
- 10. Переменные, формула и уравнение Бине.
- 11. Задача двух тел. Конические сечения. Задача многих тел.
- 12. Динамика твердого тела. Кинетическая энергия и кинетический момент при движении твердого тела около неподвижной точки.
- 13. Геометрия масс. Моменты инерции. Тензор инерции и эллипсоид инерции.
- 14. Преобразование тензора инерции при повороте осей; главные оси инерции.

- 15. Преобразование тензора инерции при параллельном переносе осей; теорема Гюйгенса-Штейнера.
- 16. Динамические уравнения Эйлера. Случай Эйлера.
- 17. Первые интегралы. Движение динамически симметричного твердого тела в случае Эйлера, параметры свободной регулярной прецессии в случае Эйлера.
- 18. Интегрирование уравнений движения свободного твердого тела в эллиптических функциях. Геометрическая интерпретация Пуансо. Интерпретация Мак-Каллога.
- 19. Момент сил, поддерживающий регулярную прецессию динамически симметричного твердого тела. Движение твердого тела с динамической симметрией в наблюдаемых переменных.
- 20. Случай Лагранжа–Пуассона. Вынужденная регулярная прецессия, устойчивость спящего волчка. Интегрирование уравнений движения в случае малых углов нутации.
- 21. Элементарная теория гироскопов.
- 22. Понятие о случае Ковалевской в динамике твердого тела.
- 23. Уравнения Лагранжа. Основные определения. Основные понятия о связях. Классификация связей. Возможные и виртуальные перемещения. Число степеней свободы. Гипотеза идеальных связей. Голономные системы.
- 24. Конфигурационное многообразие голономной системы с конечным числом степеней свободы. Параметризация системы. Обобщенные координаты. Обобщенные силы.
- 25. Уравнения Лагранжа. Уравнения Лагранжа в случае потенциальных сил, лагранжиан.
- 26. Свойства уравнений Лагранжа: ковариантность, разрешимость. Структура кинетической энергии.
- 27. Понятие первого интеграла динамической системы. Теорема об изменении полной энергии и ее приложения. Консервативные системы.
- 28. Обобщенный интеграл энергии (интеграл Якоби–Пенлеве). Циклические координаты и циклические интегралы.
- 29. Гироскопические и диссипативные силы. Обобщенный потенциал.
- 30. Уравнения для систем с дополнительными связями. Общее уравнение динамики
- 31. Уравнения Лагранжа с множителями. Уравнения Лагранжа 1-го рода для систем с идеальными связями.
- 32. Преобразования Лежандра. Уравнения Рауса.

Составитель: ст. пр	еподаватель	Ц	винкайло l	П.(7

«У	ТВЕРЖДАЮ»
зав. кас	редрой, доцент
	В.Е.Федоров
« <u> </u> » _	2019 г.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № _1_

по дисциплине «Теоретическая механика»
направление «Автоматизация технологических процессов и производств»
профиль «Автоматизация технологических процессов и производств»,
II курс, III семестр, o/o
1 Теоремы динамики в неинерциальных системах отсчета. Переносные и
кориолисовы силы инерции.
2 Вращение твердого тела вокруг неподвижной оси. Определение. Задание
движения.
3 Решение задачи C1.1
Экзаменатор П.С. Цвинкайло «» 2019 г.
« <u> </u>
«УТВЕРЖДАЮ» зав. кафедрой, доцен В.Е.Федорог «» 2019 г
приднестровский университет ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № _2_
по дисциплине «Теоретическая механика»
направление «Автоматизация технологических процессов и производств»
профиль «Автоматизация технологических процессов и производств»,
II курс, III семестр, o/o
1 Интегрирование уравнений движения в квадратурах, случаи аналитической
интегрируемости (степенная зависимость потенциальной энергии от радиуса).
2 Теорема об эквивалентности двух пар сил, расположенных в одной плоскости.
3 Решение задачи С1.2
Экзаменатор П.С. Цвинкайло «» 2019 г.

«УТВЕРЖДАЮ» зав. кафедрой, доцент

		В.Е.Федоров
«	>>	2019 г.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № _3_

по д	исциплине « Теоретическая механика »	
	равление «Автоматизация технологических процессов и производств	
прос	филь «Автоматизация технологических процессов и производств»,	
	урс, III семестр, о/о Задача двух тел. Конические сечения. Задача многих тел	
1_	Задача двух тел. Конические сечения. Задача многих тел	
2	Теорема о сложении моментов сил, составляющих пару. Сложение пар	ы сил.
	D	
3	Решение задачи С1.3	
	Экзаменатор П.С. Цвинкайло	
	«»2019 г.	
		«УТВЕРЖДАЮ»
		«УТВЕГЖДАЮ» зав. кафедрой, доцент
		В.Е.Федоров
		« <u>»</u> 2019 г.
	ПРИДНЕСТРОВСКИЙ УНИВЕРСИТЕТ	
	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № .	4_
по д	цисциплине «Теоретическая механика»	
	равление «Автоматизация технологических процессов и производств	»
	филь «Автоматизация технологических процессов и производств»,	
	урс, III семестр, о/о	
1	Динамика твердого тела. Кинетическая энергия и кинетический момен	т при
	движении твердого тела около неподвижной точки.	
2	Частные случаи приведения сил к простейшему виду. Условия и уравн	ения
	равновесия	
3	Решение задачи С1.4	
	Экзаменатор П.С. Цвинкайло	
	«»2019 г.	«УТВЕРЖДАЮ»
		«УТВЕРЖДАЮ» зав. кафедрой, доцент
		В.Е.Федоров
		Б.Е.Федоров 2010 г

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № _5_

	исциплине « Теоретическая механика »
	равление «Автоматизация технологических процессов и производств»
	риль «Автоматизация технологических процессов и производств»,
<u>п ку</u> 1	рс, III семестр, о/о Геометрия масс. Моменты инерции. Тензор инерции и эллипсоид инерции.
	теометрия масс. Моменты инерции. тензор инерции и эллипсоид инерции.
2	Расчет ферм: понятие о ферме; условие статической неопределимости и
	геометрической неизменяемости ферм; порядок расчета ферм.
3	Решение задачи С1.5
	TAMENTO SWAW IT CITE
	Экзаменатор П.С. Цвинкайло
	«»2019 г.
	«УТВЕРЖДАЮ»
	зав. кафедрой, доцент
	В.Е.Федоров
	В.Е.Федоров «» 2019 г.
	u .
	ПРИДНЕСТРОВСКИЙ УНИВЕРСИТЕТ
	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № <u>6</u>
	исциплине «Теоретическая механика» равление «Автоматизация технологических процессов и производств»
	риль «Автоматизация технологических процессов и производств»,
	рс, III семестр, о/о
$\frac{11}{1}$	Динамические уравнения Эйлера. Случай Эйлера.
2	Методы расчета реакций в стержнях ферм: метод вырезания узлов; метод сечений
	(Риттера).
3	Решение задачи С1.6
	Экзаменатор П.С. Цвинкайло
	«»2019 г.
	AALDEDALII VIO
	«УТВЕРЖДАЮ»
	«УТВЕРЖДАЮ» зав. кафедрой, доцент В.Е.Федоров

ПРИДНЕСТРОВСКИЙ УНИВЕРСИТЕТ

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № _7_

по дисциплине «Теоретическая механика» направление «Автоматизация технологических процессов и произ	ролотру
профиль «Автоматизация технологических процессов и производс	
II курс, III семестр, о/о	
1 Движение твердого тела с динамической симметрией в наблюда	емых переменных.
2 Центр тяжести твердого тела. Координаты центра тяжести одно	родных тел.
Davisarius sa raini C1 7	
3 Решение задачи С1.7	
Экзаменатор П.С. Цвинкайло	
«»2019 г.	
	«УТВЕРЖДАЮ»
	зав. кафедрой, доцент
	В.Е.Федоров «» 2019 г.
	« <u></u> » 2019 г.
нринцестрорский униревсит	
ПРИДНЕСТРОВСКИЙ УНИВЕРСИТ	EI
эмэлмгилиндий гилгт	T MG O
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ	745 <u>9</u>
по дисциплине «Теоретическая механика»	
направление «Автоматизация технологических процессов и произ	
профиль «Автоматизация технологических процессов и производс	тв»,
II курс, III семестр, о/о	
1 Первые интегралы. Движение динамически симметричного твер Эйлера.	одого тела в случае
Эплера.	
2 Естественный способ задания движения точки. Определение ско	орости и ускорения
точки.	<u> </u>
3 Решение задачи C1.8	
ПС Ц	
Экзаменатор П.С. Цвинкайло	
«»2019 г.	
	TIMDEDMAR LIO
	«УТВЕРЖДАЮ»
	зав. кафедрой, доцент
	В.Е.Федоров
	«» 2019 г.

ПРИДНЕСТРОВСКИЙ УНИВЕРСИТЕТ

по дисциплине «Теоретическая механика» направление «Автоматизация технологических процессов в	и произволств»
профиль «Автоматизация технологических процессов и пр	
II курс, III семестр, о/о	0110204012,
1 Интегрирование уравнений движения свободного тверд	ого тела в эллиптических
функциях	
2 Сложное движение точки. Теоремы о сложении скорост	ей и ускорений.
3 Решение задачи С1.9	
Экзаменатор П.С. Цвинкайло	
«»2019 г.	
	«УТВЕРЖДАЮ»
	зав. кафедрой, доцент
	В.Е.Федоров «» 2019 г.
ПРИДНЕСТРОВСКИЙ УНИВ	ЕРСИТЕТ
	(HDT 34 40
ЭКЗАМЕНАЦИОННЫЙ БИ	JIET № <u>10</u>
по дисциплине «Теоретическая механика»	
направление «Автоматизация технологических процессов и	и производств»
профиль «Автоматизация технологических процессов и пр	оизводств»,
II курс, III семестр, о/о	
1 Уравнения Лагранжа. Основные определения. Основны	е понятия о связях.
Классификация связей.	
2. Метолы нахожления центра тяжести	
2 Методы нахождения центра тяжести.	
3 Решение задачи С1.0	
3 гешение задачи ст.о	
Экзаменатор П.С. Цвинкайло	
«»2019 г.	
	«УТВЕРЖДАЮ»
	зав. кафедрой, доцент
	В.Е.Федоров
	<u>«»</u> 2019 г.
ПРИДНЕСТРОВСКИЙ УНИВ	ЕРСИТЕТ
ЭКЗАМЕНАЦИОННЫЙ БИ	ГЛЕТ № 11
по дисциплине « Теоретическая механика »	

направление «Автоматизация технологических процессов и производств»

профиль «Автоматизация технологических процессов и производств», 1 Уравнения Лагранка. Возможные и виртуальные перемещения. Число степеней свободы. Гипотеза идеальных связей. 2 Моменты силы относительно точки и оси. 3 Решение задачи С2.0 Экзаменатор П.С. Цвинкайло «» 2019 г. ———————————————————————————————————
2 Моменты силы относительно точки и оси. 3 Решение задачи С2.0 Экзаменатор
2 Моменты силы относительно точки и оси. 3 Решение задачи С2.0 4 Г.С. Цвинкайло 4 УТВЕРЖДАЮ, зав. кафедрой, доцент В.Е. Федороб «
3 Решение задачи С2.0 Экзаменатор П.С. Цвинкайло «» 2019 г. — 8.E.Федоров — 2019 г ПРИДНЕСТРОВСКИЙ УНИВЕРСИТЕТ ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 12
Экзаменатор
«»
«»
«УТВЕРЖДАЮ: зав. кафедрой, доцен В.Е.Федорог ——————————————————————————————————
ав. кафедрой, доцент В.Е.Федорой «» 2019 г ПРИДНЕСТРОВСКИЙ УНИВЕРСИТЕТ ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 12 по дисциплине «Теоретическая механика» направление «Автоматизация технологических процессов и производств» профиль «Автоматизация технологических процессов и производств», II курс, III семестр, о/о 1 Голономные системы. Конфигурационное многообразие голономной системы с конечным числом степеней свободы. 2 Аналитическое сложение системы сходящихся сил. Теорема о равновесии трех
аав. кафедрой, доцент В.Е.Федорой «» 2019 г ПРИДНЕСТРОВСКИЙ УНИВЕРСИТЕТ ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 12 по дисциплине «Теоретическая механика» направление «Автоматизация технологических процессов и производств» профиль «Автоматизация технологических процессов и производств», II курс, III семестр, о/о 1 Голономные системы. Конфигурационное многообразие голономной системы с конечным числом степеней свободы. 2 Аналитическое сложение системы сходящихся сил. Теорема о равновесии трех
зав. кафедрой, доцен В.Е.Федорой «» 2019 г ПРИДНЕСТРОВСКИЙ УНИВЕРСИТЕТ ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 12 по дисциплине «Теоретическая механика» направление «Автоматизация технологических процессов и производств» профиль «Автоматизация технологических процессов и производств», И курс, III семестр, о/о 1 Голономные системы. Конфигурационное многообразие голономной системы с конечным числом степеней свободы. 2 Аналитическое сложение системы сходящихся сил. Теорема о равновесии трех
—
ПРИДНЕСТРОВСКИЙ УНИВЕРСИТЕТ ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № _12_ по дисциплине «Теоретическая механика» направление «Автоматизация технологических процессов и производств» профиль «Автоматизация технологических процессов и производств», II курс, III семестр, о/о 1 Голономные системы. Конфигурационное многообразие голономной системы с конечным числом степеней свободы. 2 Аналитическое сложение системы сходящихся сил. Теорема о равновесии трех
ПРИДНЕСТРОВСКИЙ УНИВЕРСИТЕТ ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №12 по дисциплине «Теоретическая механика» направление «Автоматизация технологических процессов и производств» профиль «Автоматизация технологических процессов и производств», II курс, III семестр, о/о 1 Голономные системы. Конфигурационное многообразие голономной системы с конечным числом степеней свободы. 2 Аналитическое сложение системы сходящихся сил. Теорема о равновесии трех
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 12 по дисциплине «Теоретическая механика» направление «Автоматизация технологических процессов и производств» профиль «Автоматизация технологических процессов и производств», II курс, III семестр, о/о 1 Голономные системы. Конфигурационное многообразие голономной системы с конечным числом степеней свободы. 2 Аналитическое сложение системы сходящихся сил. Теорема о равновесии трех
по дисциплине « Теоретическая механика » направление « Автоматизация технологических процессов и производств » профиль « Автоматизация технологических процессов и производств », II курс, III семестр, о/о 1 Голономные системы. Конфигурационное многообразие голономной системы с конечным числом степеней свободы. 2 Аналитическое сложение системы сходящихся сил. Теорема о равновесии трех
направление « Автоматизация технологических процессов и производств » профиль « Автоматизация технологических процессов и производств» , II курс, III семестр, о/о 1 Голономные системы. Конфигурационное многообразие голономной системы с конечным числом степеней свободы. 2 Аналитическое сложение системы сходящихся сил. Теорема о равновесии трех
профиль «Автоматизация технологических процессов и производств», II курс, III семестр, о/о 1 Голономные системы. Конфигурационное многообразие голономной системы с конечным числом степеней свободы. 2 Аналитическое сложение системы сходящихся сил. Теорема о равновесии трех
 II курс, III семестр, о/о 1 Голономные системы. Конфигурационное многообразие голономной системы с конечным числом степеней свободы. 2 Аналитическое сложение системы сходящихся сил. Теорема о равновесии трех
 Голономные системы. Конфигурационное многообразие голономной системы с конечным числом степеней свободы. Аналитическое сложение системы сходящихся сил. Теорема о равновесии трех
2 Аналитическое сложение системы сходящихся сил. Теорема о равновесии трех
* * *
* * *
3 Решение задачи С2.1
Экзаменатор П.С. Цвинкайло
«»2019 г.
«УТВЕРЖДАЮ
зав. кафедрой, доцен
В.Е.Федоро: 2019 г
ПРИДНЕСТРОВСКИЙ УНИВЕРСИТЕТ
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № <u>13</u>
по дисциплине « Теоретическая механика »
направление «Автоматизация технологических процессов и производств»
профиль «Автоматизация технологических процессов и производств», II курс, III семестр, о/о

 Понятие о случае Ковалевской в динамике твердого тела. 	
1 Понятие о случае ковалевской в динамике твердого тела.	
2 Сходящаяся система сил. Геометрическое сложение. Условие раг	вновесия
сходящейся системы сил.	
3 Решение задачи С2.2	
Экзаменатор П.С. Цвинкайло	
«»2019 г.	
	«УТВЕРЖДАЮ»
	зав. кафедрой, доцент
	В.Е.Федоров «» 2019 г
ПРИДНЕСТРОВСКИЙ УНИВЕРСИТІ	ET
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ	№ 14
по дисциплине « Теоретическая механика »	
направление «Автоматизация технологических процессов и произв	
профиль «Автоматизация технологических процессов и производст	гв»,
II курс, III семестр, о/о 1 Параметризация системы. Обобщенные координаты. Обобщенны	ые сипы
тириметризации спотомы. Осоощенные поординаты. Осоощения	AC CHAIM.
2 Плоскопараллельное движение тела. Определение. Теорема 1 (ог	тределение
скоростей и ускорений точек тела).	
3 Решение задачи С2.3	
Экзаменатор П.С. Цвинкайло	
«»2019 г.	
<u> </u>	
	«УТВЕРЖДАЮ»
	зав. кафедрой, доцент В.Е.Федоров
	<u>«»</u> 2019 г
	D.M.
ПРИДНЕСТРОВСКИЙ УНИВЕРСИТІ	ET
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ	№ <u>15</u>
по дисциплине « Теоретическая механика »	
направление «Автоматизация технологических процессов и произв	одств»
профиль «Автоматизация технологических процессов и производст	ГВ»,
II курс, III семестр, о/о 1 Движение материальной точки в центральном поле. Законы сохр	апьпиа
движение материальной точки в центральном поле. Законы сохр	инспил.

2	Аксиомы статики. Связи и реакции связей.	
3	Решение задачи С2.4	
	Экзаменатор П.С. Цвинкайло « » 2019 г.	
		«УТВЕРЖДАЮ» зав. кафедрой, доцен
		В.Е.Федорон «» 2019 г
	приднестровский университет	
	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №	_16_
	исциплине «Теоретическая механика» равление «Автоматизация технологических процессов и производст	B»
	филь «Автоматизация технологических процессов и производств»,	
	урс, III семестр, о/о Общие свойства движения. Законы Кеплера. Интеграл Лапласа.	
1	Общие свойства движения. Законы Кеплера. Интеграл Лапласа.	
	Равномерное и равнопеременное вращение тела.	
3	Решение задачи С2.5	
	Экзаменатор П.С. Цвинкайло	
	«»2019 г.	
		«УТВЕРЖДАЮ» зав. кафедрой, доцент В.Е.Федоров «» 2019 г
	ПРИДНЕСТРОВСКИЙ УНИВЕРСИТЕТ	
	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №	17
по л	исциплине « Теоретическая механика »	
	равление «Автоматизация технологических процессов и производст	B»
	филь «Автоматизация технологических процессов и производств»,	
	урс, III семестр, о/о Уравнения Лагранжа в случае потенциальных с	
1	у равнения лагранжа. У равнения лагранжа в случае потенциальных с лагранжиан.	лил,
	····· p··············	
	Теорема 2 (о проекции скоростей). Теорема 3 (Шапа). Спенствия	-

3	Решение задачи С2.6
	Энганалага
	Экзаменатор П.С. Цвинкайло
	«»2019 г.
	«УТВЕРЖДАЮ
	зав. кафедрой, доцен В.Е.Федоро
	B.E.Федоро «2019
	ПРИДНЕСТРОВСКИЙ УНИВЕРСИТЕТ
	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 18
	,
	исциплине «Теоретическая механика» равление «Автоматизация технологических процессов и производств»
	риль «Автоматизация технологических процессов и производств»,

1	рс, III семестр, о/о Применение законов динамики к системам переменного состава. Уравнение
	Мещерского.
	Tr. Mr.
2	Кориолисово ускорение. Правило Жуковского.
3	Решение задачи С2.7
	Экзаменатор П.С. Цвинкайло
	«»2019 г.
	«УТВЕРЖДАЮ
	зав. кафедрой, доцен
	В.Е.Федоро
	« <u> </u>
	ПРИДНЕСТРОВСКИЙ УНИВЕРСИТЕТ
	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № _19_
	· · · · · · · · · · · · · · · · · · ·
	исциплине «Теоретическая механика» равление «Автоматизация технологических процессов и производств»
	риль «Автоматизация технологических процессов и производств»,
	рс, III семестр, о/о
1	Циклоны и антициклоны. Маятник Фуко.
2	Мгновенный центр скоростей. Частные случаи определения мгновенного центра
	скоростей
	•
3	Решение задачи С2.7

Экза	менатор		П.С. Ц	винкайло		
	»					
						«УТВЕРЖДАЮ
					_	зав. кафедрой, доцен В.Е.Федоро 2019 г
		придне	СТРОВСЬ	сий унив	ЕРСИТЕТ	
	ЭКЗ	AMEHA				
		гическая мех		v		
		изация техно ция технолог				
II курс, III с						
<u>1</u> Задач		ого–Энеева. Е	Злияние вра	щения Земли	на свободно	ое движение
2 Опред	папанна пин	AŭIII IV II VERAI	DITA CHODOCT	ей Вектории	те формулит	для определения
	сти и ускоро	•	зых скорост	си. Вскторнь	ис формулы ,	для определения
3 Реше	ние задачи С	22.9				
Экза	менатор		П.С. Ц	винкайло		
	»					
						«УТВЕРЖДАЮ» зав. кафедрой, доцен
					_	В.Е.Федорог «» 2019 г
		придне	СТРОВСЬ	хий унив	ЕРСИТЕТ	
	ЭКЗ	AMEHA	цион	ный би	ИЛЕТ №	21_
		гическая мех				
		изация техно				
ІІ курс, III с		ция технолог	ических пр	оцессов и пр	јоизводств»	,
		Пежандра. Ура	авнения Рау	rca.		
2 Форм	улы сложен	ия скоростей	и ускорениі	і́ в плоском д	вижении тел	па
3 Реше	ние задачи К	X1.0				

	Экзаменатор П.С. Цвинкайло	
	«»2019 г.	
	20171.	
		«УТВЕРЖДАЮ»
		зав. кафедрой, доцент
		В.Е.Федоров
	-	<u>«»</u> 2019 г.
	ПРИДНЕСТРОВСКИЙ УНИВЕРСИТЕТ	<u> </u>
	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №	_22_
по лі	исциплине «Теоретическая механика»	
	авление «Автоматизация технологических процессов и производс	TR»
	оиль «Автоматизация технологических процессов и производств»,	
	рс, III семестр, о/о	<u>'</u>
1 Ky	рс, пт семестр, ого Потенциальная энергия. Консервативные системы, закон сохранени	я полной
		понкои
	энергии.	
	Поступательное движение тела. Определение, теорема, следствие.	-
	Поступательное движение тела. Определение, теорема, следствие.	
3	Решение задачи К1.2	
	тешение задачи кт.2	
	Экзаменатор П.С. Цвинкайло	
	«»2019 г.	
		«УТВЕРЖДАЮ»
		зав. кафедрой, доцент
		В.Е.Федоров
		« <u>»</u> 2019 г.
	ПРИДНЕСТРОВСКИЙ УНИВЕРСИТЕТ	
	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ М	2 23
	исциплине «Теоретическая механика»	
	авление «Автоматизация технологических процессов и производс	
	риль «Автоматизация технологических процессов и производств»,	<u> </u>
II ку	рс, III семестр, o/o	
1	Потенциальные, гироскопические, диссипативные силы. Критерий	
	потенциальности сил.	
2	Равномерное и равнопеременное движение точки.	
3	Решение задачи К1.1	
	e e e e e e e e e e e e e e e e e e e	
	Экзаменатор П.С. Цвинкайло	
	«»2019 г.	
	=	

	«У	ТВЕРЖДАЮ»
зав.	ка	федрой, доцент
		В.Е.Федоров
<u> </u>	<u></u> >>> _	2019 г.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № _24_

	исциплине «Теоретическая механика»
	оавление «Автоматизация технологических процессов и производств»
проф	риль «Автоматизация технологических процессов и производств»,
	грс, III семестр, o/o
1	Векторный способ задания движения точки. Определение скорости и ускорения
	точки.
	T
2	Теоремы об изменении количества движения, кинетического момента. Законы
	сохранения
3	Решение задачи К1.3
	т ешение задачи кт.5
	Экзаменатор П.С. Цвинкайло
	«»2019 г.
	«УТВЕРЖДАЮ»
	зав. кафедрой, доцен
	В.Е.Федорог
	« <u></u> » 2019 г
	прилнестрорский унирерситет
	ПРИДНЕСТРОВСКИЙ УНИВЕРСИТЕТ
	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № _25_
	ЭКЗАМЕПАЦИОППЫЙ ВИЛЕТ № 25
по д	исциплине «Теоретическая механика»
	равление «Автоматизация технологических процессов и производств»
	риль «Автоматизация технологических процессов и производств»,
	грс, III семестр, o/o
1	Координатный способ задания движения точки. Определение скорости и ускорения
	точки
	0
2	Основные теоремы динамики для системы материальных точек.
3	Решение задачи К1.4
	т ещение зиди и кт. т
	Экзаменатор П.С. Цвинкайло
	«
	<u>"</u>

	«УТВЕР	'ЖДАЮ»
зав.	кафедро	й, доцент
	B.E.	Федоров
<u> </u>	>>	_ 2019 г.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № _26_

по дисциплине «Теоретическая механика»				
направление «Автоматизация технологических процессов и производств»				
профиль «Автоматизация технологических процессов и производств»,				
II курс, III семестр, o/o				
1 Естественный способ задания движения точки. Определение скорости и ускорения				
ТОЧКИ				
Динамика точки и системы материальных точек. Инерциальные и неинерциальные				
системы отсчета. Законы Ньютона.				
3 Решение задачи К1.5				
Экзаменатор П.С. Цвинкайло				
«»2019 г.				
«УТВЕРЖДАЮ				
зав. кафедрой, доцен				
В.Е.Федоро				
<u> </u>				
<u></u>				
ПРИДНЕСТРОВСКИЙ УНИВЕРСИТЕТ				
7ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № <u>27</u>				
по дисциплине «Теоретическая механика»				
направление «Автоматизация технологических процессов и производств»				
профиль «Автоматизация технологических процессов и производств»,				
II курс, III семестр, o/o				
1 Количество движения (импульс), момент количества движения.				
2 Передаточные механизмы. Схемы простейших передаточных звеньев механизмов.				
A D IC1 4				
3 Решение задачи К1.4				
Экзаменатор П.С. Цвинкайло				
«»2019 г.				

		В.Е.Федоров
~	>>	2019 г.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № _28_

по ди	исциплине «Теоретическая механика»
напр	авление «Автоматизация технологических процессов и производств»
проф	риль «Автоматизация технологических процессов и производств»,
II куј	рс, III семестр, о/о
1	Центр масс. Кёнигова система
2	Мгновенный центр ускорений. Частные случаи определения положения
	мгновенного центра ускорений
3	Решение задачи К1.5
	Экзаменатор П.С. Цвинкайло
	«»2019 г.