Приднестровский государственный университет

им. Т.Г. Шевченко

Естественно-географический факультет

Кафедра химии и методики преподавания химии

Декан ЕГФ Филипенко С.И. « 6 » 2018 г. 2018 г.

РАБОЧАЯ ПРОГРАММА

для набора 2015 года

Учебной ДИСЦИПЛИНЫ

Б1.Б.21 "ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ"

Направление подготовки:

04.05.01.

«Фундаментальная и прикладная химия»

Специализации

«Фармацевтическая химия» «Химия окружающей среды, химическая экспертиза и экологическая безопасность» «Химическая технология»

квалификация (специалист)

«Химик»

Форма обучения:

очная

Рабочая программа дисциплины « Φ изические методы исследования» /сост. А.И. Дикусар — Тирасполь: ГОУ ПГУ, 2018 — 18 с.

Рабочая программа предназначена для преподавания дисциплины *Б1.Б.21* "ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ" базовой части учебного плана очной формы обучения по специальности 04.05.01. "Фундаментальная и прикладная химия"

Рабочая программа составлена с учетом Федерального Государственного образовательного стандарта профессионального образования по специальности 04.05.01. "Фундаментальная и прикладная химия", утвержденного приказом № 1174 от 12.09.2016г Министерством образования и науки РФ.

Составитель:

Дикусар А.И., профессор кафедры химии и МПХ

any

1. Цели и задачи дисциплины.

Развитие химии невозможно без широкого использования в химических исследованиях достижений физики и еè новых методов. Взаимопроникновение химии и физики имеет большое значение для развития естественных наук и способствует их взаимному обогащению. Арсенал современных физических методов в химии настолько обширен и применение их настолько разнообразно, что требуется систематическое изучение теоретических принципов и их практическое использование.

Целями освоения дисциплины «Физические методы исследования» являются освоение студентами методологии различных физических методов исследований химических соединений и овладение практическими навыками использования методов, доступных широкому кругу исследователей, а также знакомство с реже применяющимися, но весьма важными для химии методами получения сведений о строении молекул.

2. Место дисциплины в структуре ООП специалиста

- **2.1.** Дисциплина Б1.Б.21 «Физические методы исследования» относится к обязательным дисциплинам вариативной части базового цикла дисциплин основной образовательной программы по специальности 04.05.01. "Фундаментальная и прикладная химия".
- 2.2. Курс «Физические методы исследования» является промежуточным этапом профессиональной подготовки специалиста-химика. Методология курса предполагает тесную связь с другими дисциплинами: неорганической, органической, физической химией, квантовой механикой, математикой. Для ее изучения необходимы знания, умения и компетенции по химии, физике, математике, квантовой химии, в объеме, предусмотренным государственным образовательным стандартом.

2.3. Изучение дисциплины необходимо для знаний, умений и навыков, формируемых последующими дисциплинами/практиками:

Дисциплина "Физические методы исследования" содержательно взаимосвязана с дисциплинами "Высшая математика", "Физика", "Неорганическая химия", "Аналитическая химия", "Физическая химия", "Органическая химия". Изучение дисциплины «Физические методы исследования» способствует дальнейшему освоению профильных дисциплин и выполнения квалификационной работы.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины.

Изучение дисциплины направлено на формирование у обучающихся следующих общекультурных (ОК), обще-профессиональных (ОПК) и профессиональных (ПК) компетенций:

№	Код	Содержание ком-	В результате изуч	ения дисциплины обу	учающиеся должны:
п/п	компе- тенции	петенции	Знать	Уметь	Владеть
1.	OK-1	способностью к абстрактному мышлению, анали- зу, синтезу	Основные законы и понятия координационной химии; основные этапы развития и современное состояние координационной химии.	формулировать задачи, необходимые для реализации профессиональных функций, а также использовать для их решения методы изученных наук	Навыками проведения научных исследований в области координационных соединений, интернет технологиями

№	Код	Содержание ком-	В результате изуч	ения дисциплины об	учающиеся должны:
п/п	компе- тенции	петенции	Знать	Уметь	Владеть
2.	ОК-7	готовностью к саморазвитию, самореализации, использованию творческого потенциала	основные понятия и законы координационной химии; основные этапы развития координационной химии, ее современное состояние	Уметь пользоваться научной литературой, интерпретировать исследования, грамотно и излагать материал	Навыками проведения научных исследований, интернет технологиями
3.	ОПК-1	принимать, развивать и использовать теоретические основы традиционных и новых разделов химии при решении про-	ния теории строения координационных соединений, теории химической связи, теории кислот и оснований, теории растворов; закономерности химических превращений и синтеза координационных соединений.	дукты реакций координационных соединений по известным исходным веществам; выполнять исходные вычисления, итоговые расчеты с использованием статистической обработки результатов; самостоятельно	 операциями при выполнении лабораторных опытов по практикуму координационной химии; техникой работы с химической посудой, взвешиванием веществ и сбором установок для выполнения опытов; методами синтеза координационных соединений; методами установления состава и строения координационных соединений;
4.	ОПК-2	ками химического эксперимента, синтетическими и аналитическими методами получения и исследования химических веществ	• основные положения теории строения координационных соединений, теории химической связи, теории кислот и оснований, теории растворов; закономерности химических превращений и синтеза координационных соединений.	раторные опыты, объяснять суть конкретных реакций, оформлять отчетную документацию по экспериментальным данным; выполнять исходные вычисления, итоговые расчеты с использованием статистической	 операциями при выполнении лабораторных опытов по практикуму координационной химии; техникой работы с химической посудой, взвешиванием веществ и сбором установок для выполнения опытов; методами синтеза координационных соединений; методами установления состава и строения координационных соединений;
5.	ОПК-3	способностью ис- пользовать теоре- тические основы фундаментальных	• основные положения теории строения координационных соединений,		• операциями при вы- полнении лаборатор- ных опытов по прак- тикуму координаци-

No॒	Код	Содержание ком-	В результате изуч	ения дисциплины об	учающиеся должны:
Π/Π	компе- тенции	петенции	Знать	Уметь	Владеть
		разделов математики и физики в профессиональной деятельности	вращений и синтеза координационных соединений.	ментацию по экспериментальным данным; выполнять исходные вычисления, итоговые расчеты с использованием статистической	онной химии; техникой работы с химической посудой, взвешиванием веществ и сбором установок для выполнения опытов; методами синтеза координационных соединений; методами установления состава и строения координационных соединений;
6.	ОПК-5	поиску, обработке, анализу научной информации и формулировке на их основе выводов и предложений	• основные положения теории строения координационных соединений, теории химической связи, теории кислот и оснований, теории растворов; закономерности химических превращений и синтеза координационных соединений.	формулировать задачи, необходимые для реализации профессиональных функций, а также использовать для их решения методы изученных наук	методиками измерений и интерпретации данных
7.	ПК-1	способностью проводить научные исследования по сформулированной тематике и получать новые научные и прикладные результаты	основы методов планирования и проведения научных и практических экспериментальных исследований	Уметь выбирать и применять в профессиональной деятельности экспериментальные и расчетнотеоретические методы исследования	грамотно использовать оборудование, приборы, самостоятельно спланировать и точно провести эксперимент, математически обработать и обобщить результаты исследований.
8.	ПК-2	владением навы- ками использова- ния современной аппаратуры при проведении науч- ных исследований	основы методов планирования и проведения научных и практических экспериментальных исследований	Уметь выбирать и применять в профессиональной деятельности экспериментальные и расчетнотеоретические методы исследования	грамотно использовать оборудование, приборы, самостоятельно спланировать и точно провести эксперимент, математически обработать и обобщить результаты исследований.
9.	ПК-3	владением системой фундаментальных химических понятий и методологических	Теоретические основы современной координационной химии	На основе фунда- ментальных тео- ретических зна- ний обоснованно выбирать соответ-	Методологией освоения и получения профессиональных знаний по дисциплине.

No	Код	Содержание ком-	В результате изуч	ения дисциплины обу	учающиеся должны:
п/п	компе- тенции	петенции	Знать	Уметь	Владеть
		аспектов химии, формами и мето- дами научного по- знания		ствующий метод исследования для решения конкретной практической задачи, самостоятельно работать с учебной и справочной литературой по координационной химии;	
10.	ПК-4	способностью применять основные естественнонаучные законы при обсуждении полученных результатов	основные теоретические положения в области координационной химии	применять знания естественнонаучных дисциплин для анализа и обработки результатов химических экспериментов	навыками использования теоретических основ базовых разделов естественнонаучных дисциплин при решении конкретных химических и материаловедческих задач
11.	ПК-5	способностью приобретать новые знания с использованием современных научных методов и владение ими на уровне, необходимом для решения задач, имеющих естественнонаучное содержание и возникающих при выполнении профессиональных функций	 • основные положения теории строения координационных соединений, теории химической связи, теории кислот и оснований, теории растворов; • закономерности химических превращений и синтеза координационных соединений. 	правильно и технически грамотно поставить и химически грамотно пояснить и решить конкретную задачу в рассматриваемой области	Навыками проведения научных исследований, интернет технологиями
12.	ПК-6	владением современными компьютерными технологиями при планировании исследований, получении и обработке результатов научных экспериментов, сборе, обработке, хранении, представлении и передаче научной информации	Базовые приемы и методы научных исследований	Уметь интерпретировать результаты исследования.	Навыками проведения научных исследований, интернет технологиями
13.	ПК-7	готовностью пред- ставлять получен- ные в исследова- ниях результаты в виде отчетов и на- учных публикаций (стендовых докла-	Методику оформ- ления научно- исследовательских работ	Грамотно представлять выводы и результаты научных исследований	Алгоритмом оформ- ления научных статей

No	Код	Содержание ком-	В результате изуч	ения дисциплины обу	учающиеся должны:
п/п	компе-	петенции	Знать	Уметь	Владеть
		дов, рефератов и статей в периодической научной печати)			

В результате освоения дисциплины обучающийся должен:

<u>Знать</u>: теоретические основы физических методов изучения и исследования молекул и химических реакций.

<u>Уметь</u>: применять освоенные физические методы исследования для определения строения молекул, изучения химических реакций интерпретировать экспериментальные результаты;

Владеть: методами расчета характеристик молекул и физико-химических процессов, приемами экспериментальной деятельности для определения физико-химических величин и структуры вещества.

4. Структура и содержание дисциплины «Физические методы исследования»

4.1. Распределение трудоемкости дисциплины и видов учебной работы по семестрам

			Колич	ество часов			
	Трудо		В том числе				
Семестр	Трудо- емкость,	Аудиторных			Самост.	итогового	
	з.е./часы	Всего	Лекций	Лаб. раб.	Практич. занятия	работы	контроля
6	3/108	40	20	28		24	Экзамен
Итого:	3/108	40	20	28		24	36

4.2. Разделы дисциплины, виды учебной работы и формы текущего контроля.

4.2.1 Распределение лекиий по семестрам:

тем	№ занятия	Наименования темы, вопросы занятия Наименования темы, вопросы занятия	
Š	% 3a₁		Дневн.
1	1	Предмет и метод исследования физики, химии, физической химии. Физико-химические методы исследования и их классификация: 1) методы разделения смесей; 2) методы определения состава и структуры химических соединений; 3) методы качественного и количественного анализа газовых смесей, растворов и твердой фазы; 4) методы исследования химических реакций; 5) методы физического, математического и других методов моделирования химических соединений и реакций.	2

2	2	Физико-химические методы разделения и концентрирования. Клас- сификация и основные теории. Центрифугирование. Адсорбцион- ные методы, фильтрация и мембранные методы. Экстракция. Хро- матография. Ионный обмен.	2
	3	Физико-химические методы определения состава и структуры химических соединений. Классификация и основы теории. Спектроскопия. Классификация спектральных методов и их применение для определения состава и структуры.	2
	4	Рентгеноспектральный и рентгенофазовый анализ, его применение для определения состава и структуры химических соединений	2
3	5	Фотометрический анализ (колориметрия, фотоколориметрия, спектрофотометрия) и его использование для качественного и количественного анализа.	2
	6	ИК-спектроскопия и спектроскопия комбинационного рассеивания. Их применение к определению структуры химических соединений и в аналитических целях.	2
	7	Электронный парамагнитный резонанс и спектроскопия ядерного магнитного резонанса. Эффект Месбауэра.	2
4	8	Электрохимические методы анализа. Потенциометрия и потенциометрическое титрование. Полярография и амперометрическое титрование.	2
5	9	Кинетические методы исследования химических реакций. Катализ и автокатализ. Физико-химические методы исследования микроскопического механизма реакций. Кинетические методы анализа.	2
6	10	Радиометрический (изотопный) метод анализа. Основы теории. Особенности и эффективные области применения.	2
		Итого	20

4.2.2 Практические занятия:

№	Содержание практических занятий	Кол-во
		часов
	Статистические методы, анализы и обработка наблюдений. Случайные ве-	
	личины. Нормальное распределение. Основная схема производства наблю-	
	дений. Средняя и дисперсия выборки. Ошибки. Виды ошибок. Среднее	
	квадратичной отклонение отдельного измерения и генеральной совокупно-	
1	сти. Точность измерений. Абсолютная и относительная ошибка. Метод	2
1	наименьших квадратов. Линеаризация экспериментальных зависимостей.	2
	Чувствительность и точность физико-химических методов анализа. Реше-	
	ние практических задач по определению систематических, случайных	
	ошибок и использование метода наименьших квадратов в физико-	
	химических методах исследования.	
2	Закон Ламберта-Бера. Колориметрия, фотоколориметрия и спектрофото-	1
	метрия. Решение практических задач по пименению закона Ламберта-Бера.	1
3	Модульный контроль по лекциям №№1-5 и практическим занятиям 1-2.	1
4	Колебательные спектры соединений. ИК-спектроскопия. Расшифровка ИК-	2.
4	спектров. Определение соединений по их ИК-спектрам.	2
5	Уравнение Нернста и расчеты равновесных потенциалов систем металл-	2.
J	иона металла и окислительно-восстановительных систем.	<i>L</i>
6	Электрохимические методы анализа. Расчетные задачи по электрохимиче-	2.
U	ским методам анализа (потенциометрическое титрование, полярографиче-	<i>L</i>

	ский анализ, электровесовой анализ).	
7	Кинетические методы исследования химических реакций. Расчетные задачи по кинетическим методам исследования и кинетическим методам анали-	1
	3a.	
8	Модульный контроль по лекциям №№ 6-10 и и практическим занятиям	1
0	<u>№ № 4-7.</u>	1
	Итого:	12

4.2.3 Лабораторные работы:

№	Содержание лабораторной работы	Кол-во
Π/Π		часов
1	Фотоколориметрия. Определение железа (III) в виде роданида методом калибровочного графика.	4
2	Потенциометрическое кислотно-основное титрование. Определение кислоты в растворе.	4
3	Кондуктометрическое определение концентрации сульфат-иона в растворе	4
4	Определение меди в алюминиевом сплаве методом внутреннего электролиза.	4
	Итого:	16

4.2.4 Самостоятельная работа студентов:

№ п/п	Содержание	Кол-во
1	Методы разделения и концентрироания элементов и соединений. Центрифугирование. Ультрацентрифугирование. Фильтрация. Ультрафильтрация. Разновидности хроматогшрфии. Бумажная хроматография. Тонкослойная хроматография. Газожидкостная хроматография. Мембранные методы. Обратный осмос. Экстракция. Ионный обмен. Электрофорез.	4
2	Физико-химические методы определения состава и структуры химических соединений. Эмиссионный спектральный анализ. Рентгеноспектральный анализ. Рентгенофазовый анализ. Колориметрия. Фотоколориметрия. Спектрофотометрия. ИК-спектроскопия и спектроскопия комбинационного рассеивания. Электронный парамагнитный резонанс и спектроскопия ядерного магнитного резонанса. Термохимический анализ. Термогравиметрия.	4
3	Физико-химические методы анализа и исследования химических соединений. Химический люминисцентный анализ. Магнетохимия и метод статической магнитной восприимчивости.	4
4	Электрохимические методы анализа. Потенциометрия и потенциометрическое титрование. Кондуктометрический анализ. Электровесовой анализ. Полярография и амперометрическое титрование. Современные методы электрохимического исследования и анализа.	4
5	Кинетические методы исследования химических и электрохимических реакций. Катализ и автокатализ. Физико-химические методы исследования микроскопического механизма реакций. Кинетические методы анализа.	4
6	Радиометрический (изотопный) метод анализа и его применение в исследованиях, решение экологических задач, сельском хозяйстве, медицине, промышленности.	4
	Итого:	24

5. Примерная тематика курсовых проектов (работ).

Учебным планом курсовые работы не предусмотрены

6. Образовательные технологии.

Для эффективной реализации целей и задач ФГОС ВО, для воплощения компетентностного подхода в преподавании дисциплины используются следующие образовательные технологии и методы обучения:

- 1. Технология проблемного обучения при изложении лекционного материала в форме: лекция-визуализация, лекция-объяснение с привлечением элементов дискуссии, беседы.
- 2. Технология проблемного и активного обучения с использованием творчески репродуктивных методов в групповой и индивидуальной форме с целью организации активности студентов в условиях, близких к будущей профессиональной деятельности, с использованием личностно деятельного характера усвоения знаний, приобретения навыков, умений при выполнении лабораторных работ.
- 3. Технология проблемного, модульного дифференцированного обучения путем рассмотрения проблемных познавательных задач, с использованием индивидуальныого темпа обучения с целью развития творческой и познавательной самостоятельности и обеспечения индивидуального подхода с учетом динамики работоспособности студента — при проведении практических занятий, что обеспечивается применением электронного задачника в компьютерном классе.
- 4. Технология концентрированного, дифференцированного обучения в индивидуальной форме при самостоятельном выполнении индивидуальных заданий с целью развития познавательной самостоятельности, творческих способностей и умений, развития навыков работы с лекционным материалом, рекомендованной литературой, справочной информацией.

6.1. Образовательные технологии в интерактивной форме, используемые в процессе преподавания дисциплины:

На занятиях по химическим свойствам неорганических соединений студентам показываются видеозаписи демонстраций трудновоспроизводимых в реальных условиях или представляющих опасность для здоровья лабораторных опытов, фрагменты обучающих видеофильмов.

Перед показом видеозаписей формулируется цель просмотра, после чего студентам задается 3-5 ключевых вопросов, которые являются основой для последующего обсуждения.

Всего 50 % интерактивных занятий от объема аудиторной работы.

6.2. Примеры образовательных технологий в интерактивной форме:

- 1. компьютерная симуляция
- 2. проблемная лекция
- 3. дискуссия

6.3. Электронные образовательные ресурсы, используемые в процессе преподавания дисциплины:

http://www.alleng.ru/edu/chem9.htm - образовательные ресурсы Интернета — Химия http://himkniga.com/ - книги по химии

http://www.chem.isu.ru/leos/index.php - справочно-информационная система "Химический ускоритель"

http://www.chemweb.com/ - научный портал (содержит базы данных по химии)

7. Оценочные средства для контроля успеваемости и результатов освоения дисциплины.

7.1. Формы текущего контроля и промежуточной аттестации, виды оценочных средств:

		Формы контроля	Наименование раздела дисциплины	Оценочные средства			
№ п/п	№ семе- стра			Виды	Кол-во вопро- сов в задании	Кол-во незави- симых вариан- тов	
1	2	3	4	5	6	7	
1.	6	Контроль освоения темы	1-10	собеседование по ситуацион- ным задачам	1	6	
2.	6	Контроль освоения темы (контроль лабораторной работы)	5-6	собеседование по лаборатор- ным работам	5	1	
3.	6	Контроль освоения ряда тем (контрольные работы)	1-8	письменный контроль	5	6/12	
4.	6	экзамен	1-10	устный контроль	3/25	25	

Виды оценочных средств:

- 1. Собеседование по ситуационным задачам
- 2. Собеседование по лабораторным работам.
- 3. Письменный текущий контроль освоения темы (контрольные работы).
- 4. Письменный контроль промежуточной аттестации (экзамена).

7.2. Примеры оценочных средств:

7.2.1. Примеры заданий и вопросов контрольных работ

Электронная спектроскопия.

- 1. В каких координатах необходимо представить спектр с исчерпывающей информацией?
- 2. Каковы общие принципы допущения метода МО ЛКАО?
- 3. Каким образом классифицируются МО?
- 4. На каком основании в некоторых учебниках приводятся укороченные энергетические диаграммы МО органических соединений?
- 5. Приведите примеры соединений, в ЭСП которых проявляются бато- и гипсохромное смещения полос?
- 6. Как с позиции теории МО ЛКАО объяснить концепцию хромофорного и ауксохромного влияния на поглощения излучения?
- 7. Объясните различия энергетических диаграмм МО октаэдрических комплексов, рассчитанных:
 - а) с учетом лишь сигма-связей металл-лиганд;
 - б) с учетом и сигма- и пи-связей металл-лиганд.
- 8. Какие результаты квантово-механического расчета используются для предсказания спектров сложных молекул?

- 9. Какие факторы влияют на значение молярного коэффициента экстинкции?
- 10. Орбитали каких атомов в комплексных соединениях рассматриваются в ТКП? Нарисуйте эти орбитали.
- 11. Объясните тот факт, что спектр многоатомной молекулы имеет несколько полос, а не одну.

Колебательная спектроскопия.

- 1. Каков результат рассмотрения модели гармонического осциллятора с позиции классической механики?
- 2. Какие характеристики двухатомной молекулы влияют на чистоту ее колебания? Напишите уравнение этой зависимости.
- 3. Каков результат рассмотрения модели гармонического осциллятора с позиции квантовой механики?
- 4. Каков результат рассмотрения модели ангармонического осциллятора с позиции квантовой механики?
- 5. Предскажите и сравните ИК-спектры гармонического и ангармонического осцилляторов.
- 6. Справедливо ли утверждение «чем больше частота колебательного перехода, тем больше его интенсивность»?
- 7. В чем заключается различие понятий «нормальная координата» и «естественная координата»?
- 8. Чем вызвана необходимость введения понятия нормальной координаты многоатомной молекулы?
- 9. Объясните, почему для молекул Br_2 , O_2 и других гомоядерных двух-атомных молекул не удается зарегистрировать ИК- спектр?
- 10. Какие классификации нормальных колебаний Вам известны? Приведите примеры.
- 11. Приведите примеры и сравните частоты колебаний разной формы у одной и той же группы атомов.
- 12. Какие факторы влияют на частоту и интенсивность полосы поглощения определенной группы атомов?

Колебательно-вращательная спектроскопия.

- 1. Какие из представленных молекул HCl, H_2 , Cl_2 , C_2H_4 , CH_3Cl , CCl_4 , $CHCl_3$, C_6H_6 , C_6H_5Cl можно исследовать методами вращательной и колебательно-вращательной спектроскопии?
- 2. Вычислите и нарисуйте энергетическую диаграмму вращательных уровней, в которой вращательное квантовое число равно 0, 1, 2, 3, 4.
- 3. Объясните факт наличия большого числа линий и прохождение интенсивности их через максимум во вращательном спектре.
- 4. Докажите, что симметричного волчка один момент инерции отличается от двух других одинаковых моментов инерции.
- 5. Имеются ли различия в колебательно-вращательных спектрах молекул CO_2 и HCN? Ответ обоснуйте.
- 6. У молекул N_2O и NO_2 имеется по 3 основных колебания, некоторые из них видны одновременно в ИК и KP спектрах. Полосы N_2O имеют простой PR –контур, полосы NO_2 сложную вращательную структуру. Каково строение молекул?

<u>Рефрактометрия</u>

- 1. Какие из приведенных ниже выражений относятся к абсолютному показателю преломления, какие к относительному?
- а) отношение синуса угла падения луча в первой среде к синусу угла падения во второй среде;
- б) отношение угла падения луча во второй среде к углу падения в первой среде;

- в) отношение абсолютного показателя преломления 2-го вещества к абсолютному показателю преломления 1-го вещества;
- г) отношение скорости света в пустоте к скорости света в веществе;
- д) отношение скорости света в первой среде к скорости света во второй среде;
- е) произведение показателя преломления воздуха и показателя преломления вещества, измеренного по отношению к воздуху.
- ж) произведение 1,00027 и измеренного показателя преломления исследуемого вещества.
- 2. Зависимость показателя преломления от длины волны называют:
 - а) рефракцией;
 - б) дисперсией
 - в) экзальтацией
 - г) поляризацией
 - д) аномалией
 - е) поляризуемостью.
- 3. Каковы причины наличия экзальтации молекулярной рефракции?
 - а) сопряжение связей в молекуле;
 - б) усреднение результатов расчета по аддитивной схеме;
 - в) ошибка эксперимента;
 - г) наличие нециклической сопряженной системы у молекулы, конденсированных колец, сопряженных колец.
- 4. В каких случаях зависимость показателя преломления от состава раствора прямолинейна?
 - а) для идеальных растворов, если измерялся пс или nF;
 - б) для неокрашенных растворов;
 - в) для идеальных растворов, если состав раствора выражен в объемных долях или процентах;
 - г) для смесей жидкостей, кипящих при близких температурах.
- 5. Одинаково ли значение молекулярной рефракции одного итого же вещества, вычисленное и по nc и по nF?
 - а) одинаково;
 - б) Rc больше RF, т.к. F лучи поглощаются веществом;
 - в) Rc меньше RF, т.к. для C- лучей связевые рефракции меньше;
 - г) Rc больше RF, имеем дело с аномальной дисперсией.
- 6. Что называют молекулярной дисперсией, обладает ли она свойством аддитивности?
 - а) неаддитивное отклонение теоретически вычисленной молекулярной рефракции для 20° С от экспериментальной;
 - б) разность молекулярных рефракций для двух длин волн; аддитивна, т.к. это разность аддитивных величин;
 - в) произведение удельной дисперсии и молярной массы; аддитивно;
 - г) разность показателей преломления, вычисленная по дисперсионным формулам; аддитивна;
- 7. Каким образом можно получить сведения о молекулярной рефракции твердого вещества?
 - а) измерить показатель преломления, вычислить рефракцию;
 - б) для твердых веществ показатель преломления практически опре-делить нельзя;
 - в) растворить вещество, измерить n x раствора и, используя свой-ство аддитивности удельной рефракции раствора, зная концентрацию его, вычислить удельную рефракцию растворенного вещества, затем-молекулярную;
 - г) по показателю преломления раствора и плотности твердого веще-ства рассчитываем молекулярную рефракции, из которой вычтем мо-лекулярную рефракцию растворителя.

ЭПР – спектроскопия

1. Сколько пиков со сверхтонкой структурой можно ожидать вследствие делокализации неспаренного электрона в катионе дибензолхрома между кольцами?

- 2. Предскажите спектр ион-радикала хлорбензола при условии, что разрешены все сверхтонкие линии.
- 3. Для какого бимолекулярного процесса с константой скорости 107 или 1010 уширение линии при прочих равных условиях будет больше?
- 4. Сколько линий можно ожидать в спектре гипотетической молекулы SCl_3 (для SI=0, для ClI=3/2)?
- 5. Предскажите число спектральных линий для:
 - a) Co (H2O)2+6
 - б) Cr (H2O)2+6

Объясните, как должны проявляться в этих примерах расщепление в нулевом поле и крамерсово вырождение.

<u>Метод ЯМР</u>

1. В гипотетическом парамагнитном комплексе $M(en)_2Cl_2$ спектроскопически не обнаружено примесей вещества $M(en)_2ClH_2O^+$. Как установить, не происходит ли быстрое образование такой примеси, подвергающейся ещѐ более быстрому превращению по реакции

$$M(en)_2ClH_2O^+ + Cl = M(en)_2Cl_2 + H_2O?$$

- 2. В отсутствие какого-либо обмена два пика А-Н и В-Н отстоят друг от друга в спектре ЯМР на 250 гц. При комнатной температуре происходит обмен и пики отстоят друг от друга на 25 гц. Время спин-решеточной релаксации А-Н и В-Н велико, и оба соединения представлены в одинаковых концентрациях (0,2 М). вычислите время жизни протона у А и отсюда найдите константу скорости обмена (укажите единицы).
- 3. В данном соединении MF₄ (для M I = 1 / 2) значение JM-F равно 150 гц. В отсутствие химического обмена сигналы F- и M-F отстоят друг от друга на 400 гц. При комнатной температуре F- и MF₄ обмениваются с такой скоростью, что тонкая структура начинает исчезать. Предположив наличие одинаковых концентраций M-F и F- и отсутствие стабильных промежуточных веществ, вычислите для F. Каким должно быть расстояние между пиками MF и F- при этих условиях?
- 4. Спектр тетрагидрофурана $(CH_2)_4O$ является сложным и относится к типу A_2B_2 . Объясните, как можно использовать метод двойного резонанса для интерпретации этого спектра.
- 5. Определите число изомеров циклических соединений с формулой P_3N_3 (CH₃)₂Cl₄ и предскажите спектр резонанса фосфора для каждого из них (в предположении, что J, JP-H мало и можно пренебречь JP-H для атомов фосфора, не связанных с метильными группами.).
- 6. В каком из спектров и почему пик ЯМР- N14 должен быть уже в NH₃ или NH₄⁺? (Для N14 I= 1).
- 7. Как должен выглядеть спектр ЯМР PF_5 при следующих условиях (F(a) -F(b) JF(a) -F(b)):
 - а) при очень медленном обмене фтора;
 - б) при быстром межмолекулярном обмене фтора;
 - в) при быстром внутримолекулярном обмене фтора.

Масс-спектрометрия

- 1. В чем состоит фокусирующее действие магнитного поля анализатора в масс-спектрометре?
- 2. Что называется разрешающей силой масс-спектрометра и чем она определяется? Каковы пути еѐ увеличения?
- 3. Что называется чувствительностью масс-спектрометра и чем она определяется? Каковы пути еè увеличения?
- 4. На чем основана идентификация ионов в масс-спектре?
- 5. Как устанавливается брутто-формула вещества?
- 6. Приведите примеры закономерностей диссоциативной ионизации органических соединений.
- 7. Как определяются потенциалы ионизации молекул? Почему при фотоионизации точность определения потенциалов ионизации наивысшая?
- 8. В чем состоит различие вертикальных и адиабатических потенциалов ионизации?

9. Как определяются энергии разрыва химических связей? Какие данные нужны для их определения?

ТЕМЫ РЕФЕРАТОВ

- 1. Термодинамический масс-спектрометрический эксперимент.
- 2. Методы исследования ион-молекулярных реакций.
- 3. Спектроскопия ион-циклотронного резонанса.
- 4. Рефрактометрия.
- 5. резонансная спектроскопия
- 6. Метод электрического резонанса.
- 7. Теоретические основы и области применения ЭПР спектроскопии.
- 8. Теоретические основы и области применения метода ЯМР.
- 9. Сравнительные характеристики методов UV-VIS и ИК спектроскопии.

7.2.2. Вопросы к экзамену

- 1. Правила отбора в ИК-спектроскопии. Обертоны.
- 2. Эффект Штарка.
- 3. Гармонические и ангармонические колебания. Силовая постоянная.
- 4. Комбинационное рассеяние света.
- 5. Спектры комбинационного рассеяния.
- 6. Групповые колебания.
- 7. Вращательная спектроскопия. Модель жесткого ротатора.
- 8. Гармонический осциллятор. Ангармоничность.
- 9. Условия появления вращательных спектров.
- 10. Применение ИК-спектроскопии. Метод базовой линии.
- 11. Анализ колебательно-вращательных спектров.
- 12. ИК-спектроскопия основные положения и правила отбора.
- 13. Поляризованные и деполяризованные линии в спектрах КР.
- 14. Обертоны в ИК-спектрах.
- 15. Сопоставьте возможности методов спектроскопии (электронной, колебательной, вращательной, колебательно-вращательной) в исследованиях строения молекул.
- 16. Блок-схема спектрометра ЯМР и принцип его действия.
- 17. Колебания ангармонического осциллятора.
- 18. Изотропное и анизотропное сверхтонкое взаимодействие.
- 19. Вращательный спектр жесткого ротатора.
- 20. Химический сдвиг в спектрах ЯМР.
- 21. Предсказание с позиций ТКП различия электронных спектров поглощения тетраэдрического и квадратного комплексного ионов одного и того же металла.
- 22. Характеристики электронных спектров многоатомных молекул.
- 23. Спин-спиновое взаимодействие в спектрах ЯМР.
- 24. Правила отбора в электронной спектроскопии поглощения.
- 25. Колебания многоатомных молекул.
- 26. Электронные спектры поглощения органических соединений.
- 27. Колебательно-вращательные спектры двухатомных молекул.
- 28. Электронные спектры поглощения комплексных соединений 3d-металлов с позиций метода MO ЛКАО.
- 29. Колебательно-вращательные спектры многоатомных молекул.
- 30. Причины, вызывающие усложнение интерпретации ИК-спектров сложных молекул.

- 31. Эффект Зеемана для молекулы О2.
- 32. Расчет энергетических вращательных уровней жесткого ротатора.
- 33. Правила отбора в электронной спектроскопии поглощения.
- 34. Можно ли зарегистрировать электронные, колебательные, вращательные, колебательновращательные спектры поглощения молекул O_2 , SO_2 , NH_3 , CHN, C_2CI_4 . Объясните особенности спектров.
- 35. Эффект Зеемана для магнитных ядер.
- 36. Типы электронных переходов многоатомной молекулы органического соединения, их характеристики, проявления в спектрах.
- 37. Спектроскопия комбинационного рассеяния света
- 38. Объясните с позиций ТКП электронные спектры поглощения комплексных соединений.
- 39. Колебания гармонического осциллятора.
- 40. Сверхтонкое взаимодействие в спектрах ЯМР.
- 41. Парамагнитный и диамагнитный эффекты.
- 42. Колебательно-вращательные спектры многоатомных молекул.
- 43. Классификация нормальных колебаний многоатомной молекулы по форме и симметрии.
- 44. Расчет силы осциллятора электронного перехода.
- 45. Сопоставить правила отбора, возможности методов ИК- и КРС-спектроскопии.
- 46. Вращательный спектр молекулы типа симметричного волчка.
- 47. Каким образом, имея ИК-спектр поглощения, вычислить частоту колебаний гармонического осциллятора и коэффициент ангармоничности?
- 48. Характеристики всех типов электронных переходов в спектрах органических молекул. Факторы, влияющие на эти характеристики.

8. Учебно-методическое и информационное обеспечение дисциплины (печатные, электронные издания, интернет и другие сетевые ресурсы).

8.1. Основная литература

- 1. Пентин Ю.А., Вилков Л.В. Физические методы исследования в химии. М.: Мир, 2006.
- 2. Физические методы исследования неорганических веществ. Под ред.Никольского А.Б. M.: Академия, 2006.

8.2. Дополнительная литература

- 1. Вилков Л.В., Пентин Ю.А. Физические методы исследования в химии. Структурные методы и оптическая спектроскопия. –М.: Высш. шк., 1987.
- 2. Вилков Л.В., Пентин Ю.А. Физические методы исследования в химии. резонансные и электрооптические методы.- М.: Высш. шк., 1989.
- 3. Драго Р. Физические методы в химии. Т.1, т. 2. М.: Мир, 1981.
- 4. Иоффе Б.Б., Костиков Р.Р., Разин В.В. Физические методы определения строения органических соединений. М.: Высш. шк., 1984.
- 5. Казицына Л.А., Куплетская Н.Б. Применение УФ-, ИК-, ЯМР- спектроскопии в органической химии.-М.: Высш. шк., 1971.
- 6. Бенуэл К. основы молекулярной спектроскопии. М.:, 1985.
- 7. Уитли П. Определение молекулярной структуры. М.: Мир, 1970.
- 8. Хьюи Дж. Неорганическая химия. Строение и реакционная способ-ность. М.: Химия, 1987.

- 9. Каррингтон А., Мак-Лечлан Э. Магнитный резонанс и его применение в химии. –М.: Мир, 1970.
- 10. Ионин Б.И., Ершов Б.А. ЯМР спектроскопия в органической химии. –Л.: Химия, 1967.
- 11. Тюлин В.И. Колебательные и вращательные спектры многоатомных молекул.- М.: Изд-во Моск. ун-та, 1987.
- 12. Иоффе Б.В. Рефрактометрические методы химии. –Л.: Химия, 1974.
- 13. Блюмих Б. Основы ЯМР. М.: Техносфера, 2007.

8.3. Программное обеспечение и Интернет-ресурсы

1. MS-Excel

ны:

- 2. Microsoft Office Word
- 3. http://www.xumuk.ru/
- 4. http://www.studarhiv.ru/dir/cat16/subj19/file932/view932.html
- 5. http://www.alhimik.ru/teleclass/glava3/gl-3-1.shtml
- 6. http://www.ostu.ru/personal/sim/Concept/DAT/planlex.html
- 7. http://www.krugosvet.ru/enc/nauka_i_tehnika/himiya/BIOHIMIYA.html

9. Материально-техническое обеспечение дисциплины (модуля):

9.1. Перечень помещений, необходимых для проведения аудиторных занятий по дисциплине

- 1. аудитория лекционная с мультимедийными средствами для презентации лекционного материала;
- 2. учебная лаборатория с необходимым оборудованием, химической посудой и реактивами, с наглядными пособиями в виде таблиц для проведения лабораторных занятий;
- 3. комплект учебно-методической литературы и справочной литературы для обеспечения самостоятельной работы студентов.

9.2. Перечень оборудования, необходимого для проведения аудиторных занятий по дисциплине.

<u>№</u>	Наименование оборудованных	Перечень оборудования и технических средств обуче-			
п/п	учебных кабинетов, лаборато-	ния			
	рий				
1	Лекционные аудитории	переносной экран, проектор, ноутбук			
2	Компьютерные классы	Компьютерное оборудование с программным обеспечением GAUSSIAN, HYPERCHEM, и др.			
	Лаборатории	спектрофотометры ««СФ-28», рефрактометры Аббе, весы аналитические. При проведении лабораторных работ используются хими-			
ческие реактивы и посуда.					

10. Методические рекомендации по организации изучения дисципли-

Рабочая программа составлена с учетом Федерального Государственного образовательного стандарта профессионального образования по направлению подготовки — по специальности 04.05.01. — "Фундаментальная и прикладная химия", утвержденного приказом № 1174 от 12.09.2016г Министерством образования и науки $P\Phi$.

11. Технологическая карта дисциплины

Курс IV группа 406 семестр 7 на 2018-2019 учебный год Преподаватель – лектор профессор, д.х.н. А.И. Дикусар Преподаватель, ведущие практические занятия профессор, д.х.н. А.И. Дикусар

Кафедра химии и МПХ естественно-географического факультета

ПГУ им. Т.Г. Шевченко.

111/11 1 11 1 1	HOB TOTING.						
	Трудо- емкость, з.е./часы	В том числе					Форма
Семестр		Аудиторных				Сомост	итогового
		Всего	Лекций	Лаб. раб.	Практич. занятия	Самост. работы	контроля
6	3/108	40	20	28		24	Экзамен
Итого:	3/108	40	20	28		24	36

В соответствии с рекомендованной типовой программой модули внутри дисциплины не запланированы. Модульно-рейтинговая система не используется. Студентам на практическом и лабораторном занятии выдаются методические материалы, контрольные вопросы и домашние задания по теме следующего практического занятия, рекомендуются источники для самостоятельного изучения, а на следующем занятии осуществляется закрепление полученных знаний, решение конкретных исследовательских задач, разъяснение не полностью усвоенного материала.

Дополнительные требования для студентов, отсутствующих на занятиях по уважительной причине: устное собеседование с преподавателем по проблемам пропущенных практических занятий, обязательное выполнение внеаудиторных контрольных и письменных работ.

Составитель

профессор, д.х.н. А.И. Дикусар

Зав. кафедрой химии и МПХ

Duriff

Г. *Суу*гу доцент, к.х.н. Т.В.Щука