

ЕСТЕСТВЕННО-ГЕОГРАФИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА ЗООЛОГИИ И ОБЩЕЙ БИОЛОГИИ

«Утверждаю»
Заведующий кафедрой
Зоологии и общей биологии
доц. ______Филипенко С.И.
Протокол №1 от 04.09.2024 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине

Б1.В.07 МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

Направление подготовки (специальность) 6.44.03.05- «Педагогическое образование»

Профиль (специализация) подготовки «Биология» дополнительный профиль «География»

Квалификация (степень) Бакалавр

Форма обучения Очная

Год набора 2020

•	11 00	
Ст. пр.	Vituabel	Игнатьев И.И.

Разработал:

Паспорт фонда оценочных средств по учебной дисциплине

1. В результате изучения дисциплины у обучающихся должны быть сформированы

следующие компетенции:

следующие компет	онции.	
Категория (группа) компетенций	группа) Код и наименование универсальной компетенции	
	Универсальные компетенции и иг	ндикаторы их достижения
	Нет	Нет
O ó	щепрофессиональные компетенции	и индикаторы их достижения
Б1.В.07	ОПК-8 - Способен осуществлять ОП педагогическую деятельность на нау основе специальных научных поз осо ОП исс ОП сит реф соо	К-8.1. Осуществляет трансформацию специальных
Обязат	ельные профессиональные компете	нции и индикаторы их достижения
Б1.В.07	ПК-1 - Способен организовать ПК индивидуальную и совместную про учебно проектную деятельность ПК обучающихся в соответствующей резпредметной области про ПК дей сов	1.1. Совместно с обучающимися формулирует блемную тематику учебного проекта.

2. Программа оценивания контролируемой компетенции:

Текущая аттестация	Контролируемые модули, разделы (темы) дисциплины и их наименование *	Код контролируемой компетенции (или ее части)	Наименование оценочного средства**
1	Предмет, история, задачи и методы молекулярной биологии	ОПК-8, ПК-1	Вопросы для текущей аттестации. Тесты. Кейс-задачи.
2	Принципы строения и основные функции биополимеров. Нуклеиновые кислоты.	ОПК-8, ПК-1	Вопросы для текущей аттестации. Тесты. Кейс-задачи.
3	Принципы строения и основные функции биополимеров. Белки	ОПК-8, ПК-1	Вопросы для текущей аттестации. Тесты. Кейс-задачи.
4	Организация генома вирусов, прокариот и эукариот.	ОПК-8, ПК-1	Вопросы для текущей аттестации. Тесты.

			Кейс-задачи.
5	Репликация ДНК у прокариот и эукариот.	ОПК-8, ПК-1	Вопросы для текущей аттестации. Тесты. Кейс-задачи.
6	Транскрипция у прокариота и эукариот. Процессинг первичных транскриптов.	ОПК-8, ПК-1	Вопросы для текущей аттестации. Тесты. Кейс-задачи.
7	Трансляция и-РНК.	ОПК-8, ПК-1	Вопросы для текущей аттестации. Тесты. Кейс-задачи.
8	Регуляция экспрессии генов.	ОПК-8, ПК-1	Вопросы для текущей аттестации. Тесты. Кейс-задачи.
9	Репарация ДНК.	ОПК-8, ПК-1	Вопросы для текущей аттестации. Тесты. Кейс-задачи.
Проме	жуточная аттестация Разделы 1-9	ОПК-8, ПК-1	Вопросы для текущей аттестации. Тесты. Кейс-задачи.

Перечень оценочных средств

№ п/п	Наименование оценочного средства	Краткая характеристика оценочного средства	Представление оценочного средства в фонде
1	Кейс-задача	Проблемное задание, в котором обучающемуся предлагают осмыслить реальную профессионально-ориентированную ситуацию, необходимую для решения данной проблемы. Обучающиеся должны исследовать ситуацию, разобраться в сути проблем, предложить возможные решения и выбрать лучшее из них. Кейсы основываются на реальном фактическом материале или же приближены к реальной ситуации.	Задания для кейс- задачи
2	Реферат	Продукт самостоятельной работы студента, представляющий собой краткое изложение в письменном виде полученных результатов теоретического анализа определенной научной (учебно-исследовательской) темы, где автор раскрывает суть исследуемой проблемы, приводит различные точки зрения, а также собственные взгляды на нее.	Темы рефератов
3	Тест	Система стандартизированных заданий, позволяющая автоматизировать процедуру измерения уровня знаний и умений обучающегося.	Фонд тестовых заданий
4	Доклад, сообщение	Продукт самостоятельной работы студента, представляющий собой публичное	Темы докладов, сообщений

выступление по представлению полученных результатов решения определенной учебно-	
практической, учебно-исследовательской или научной темы	

ЕСТЕСТВЕННО-ГЕОГРАФИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ЗООЛОГИИ И ОБЩЕЙ БИОЛОГИИ

Пример кейс-задач по дисциплине «Молекулярная биология» в форме ситуационно-логических задач

- 1. В процессе трансляции участвовало 30 молекул т-РНК. Определите число аминокислот, входящих в состав синтезируемого белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.
- 2. Вам известна последовательность расположения нуклеотидов в молекуле м-РНК (ЦГГАУЦЦАУУГЦ), необходимо определить структуру гена и количество аминокислот в белке.
- 3. В биосинтезе полипептида участвовали т-РНК с антикодонами УУА, ГГЦ, ЦГЦ, ААГ, ЦГУ. Определите нуклеотидную последовательность участка каждой цепи молекулы ДНК, который несет информацию о синтезируемом полипептиде, и число нуклеотидов, содержащих А, Г, Т, Ц в двухцепочечной молекуле ДНК.
- 4. В молекуле ДНК на долю нуклеотидов с азотистым основание цитозин, приходится 18%. Определите процентное содержание других нуклеотидов в этой ДНК.
- 5. В молекуле ДНК обнаружено 880 нуклеотидов с азотистым основание гуанин, которые составляют 22% от общего числа нуклеотидов в этой ДНК. Определите: а) сколько других нуклеотидов в этой ДНК? б) какова длина этого фрагмента?
- 6. Дана молекула ДНК с относительной молекулярной массой 69 000, из них 8625 приходится на долю нуклеотидов с азотистым основание аденин. Найдите количество всех нуклеотидов в этой ДНК.
- 7. Одна из цепочек молекулы ДНК имеет следующий порядок нуклеотидов: АЦГТАГЦТАГЦГ...
 - 8. Напишите порядок нуклеотидов в комплементарной цепочке ДНК.
- 9. Порядок нуклеотидов в одной из цепочек молекулы ДНК следующий: АГЦТАЦГТАЦГА ...
- 10. Определите порядок аминокислот в полипептиде, закодированном комплементарной цепочкой ДНК.
- 11. Кодирующая цепочка молекулы ДНК имеет следующий порядок нуклеотидов: ГГЦАТГГАТЦАТ ...
- 12. Как изменится первичная структура полипептида, если выпадет третий нуклеотид? Полипептид имеет следующий порядок аминокислот: фен тре ала сер... а) Определите один из вариантов последовательности нуклеотидов гена, кодирующего данный полипептид; б)

Какие т-РНК (и какими антикодонами) участвуют в синтезе этого белка? Напишите один из возможных вариантов.

- 13. В молекуле ДНК содержится 31% аденина. Определите, сколько (в %) в этой молекуле содержится других нуклеотидов.
- 14. В трансляции участвовало 50 молекул т-РНК. Определите количество аминокислот, входящих в состав образующегося белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.
- 15. Фрагмент ДНК состоит из 72 нуклеотидов. Определите число триплетов и нуклеотидов в м-РНК, а также количество аминокислот, входящих в состав образующегося белка.
 - 16. Фрагмент одной из цепей ДНК имеет следующее строение: ГГЦТЦТАГЦТТЦ.
- 17. Постройте на ней м-РНК и определите последовательность аминокислот во фрагменте молекулы белка (для этого используйте таблицу генетического кода).
 - 18. Фрагмент м-РНК имеет следующее строение: ГЦУААУГУУЦУУУАЦ. 1
- 9. Определите антикодоны т-РНК и последовательность аминокислот, закодированную в этом фрагменте. Также напишите фрагмент молекулы ДНК, на котором была синтезирована эта и-РНК (для этого используйте таблицу генетического кода).
- 20. Фрагмент ДНК имеет следующую последовательность нуклеотидов АГЦЦГАЦТТГЦЦ.

Критерии оценок:

Оценка «отлично» выставляется обучающемуся, если он успешно применяет развитые навыки анализа методологических проблем, возникающих при решении практических задач, в том числе в междисциплинарных областях;

Оценка «хорошо», если обучающийся в целом обладает навыком анализа методологических проблем, возникающих при решении практических задач;

Оценка «удовлетворительно», если обучающийся обладает общим представлением, но не систематически применяет навыки анализа методологических проблем, возникающих при решении практических задач;

Оценка «неудовлетворительно», если обучающийся обладает фрагментарным применением навыков анализа методологических проблем, возникающих при решении практических задач.

Составитель:

Winastel

_(Игнатьев И.И.),

ЕСТЕСТВЕННО-ГЕОГРАФИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ЗООЛОГИИ И ОБЩЕЙ БИОЛОГИИ

Примеры контрольных вопросов для текущей аттестации по дисциплине «Молекулярная биология»

Γ			
Раздел дисциплины	Вопрос для проверки знаний		
	Предмет изучения молекулярной биологии.		
	История развития молекулярной биологии: основные этапы.		
Предмет, история,	Основные открытия в молекулярной биологии.		
задачи и методы	Цели и задачи молекулярной биологии.		
молекулярной	Методы молекулярной биологии.		
биологии	Практическое значение молекулярной биологии для сельского хозяйства,		
	медицины и биотехнологии.		
	Связь молекулярной биологии с другими науками.		
Принципы строения	Генетическая роль нуклеиновых кислот.		
и основные	Первичная структура нуклеиновых кислот.		
функции	Макромолекулярная структура нуклеиновых кислот.		
биополимеров.	Упаковка генетического материала.		
Нуклеиновые	Организация геномов вирусов, про- и эукариот.		
кислоты.			
П	Первичная и вторичная структура белков.		
Принципы строения	Структура глобулярных и фибриллярных белков.		
и основные	Принципы действия ферментов.		
Функции			
биополимеров. Белки	Белки в роли ферментов и переносчиков.		
Белки	Эволюция белков.		
Организация генома	Организация геномов вирусов, прокариот и эукариот.		
вирусов, прокариот	Плазмиды и мобильные генетические элементы бактерий.		
и эукариот.	Подвижные генетические элементы генома эукариот.		
	Понятие о матричном синтезе.		
Репликация ДНК у	Основные принципы репликации.		
прокариот и	Репликация ДНК у вирусов и прокариот.		
эукариот.	Топологические проблемы репликации.		
	Особенности репликации у эукариот.		
Транскрипция у	РНК-полимеразы.		
прокариот и	Цикл транскрипций.		
эукариот.	Регуляторные элементы генов, транскрибируемых РНК-полимеразой.		
Процессинг	Энхансеры и сайленсоры транскрипции генов.		
первичных	Транскрипция генов РНК и ДНК-содержащих вирусов.		
транскриптов.	Процессинг первичных транскриптов.		
Трансляция и-РНК	Генетический код и его свойства.		
	l · · · · · · · · · · · · · · · · · · ·		

	Образование рибосом у эукариот.
	Понятие о ядрышке.
	Трансляционный аппарат клетки.
	Трансляция генетического кода.
Россияния	Понятие о механизмах регуляция экспрессии генов.
Регуляция	Регуляция экспрессии генов прокариот.
экспрессии генов.	Регуляция экспрессии генов эукариот.
	Репарация ДНК.
	Нарушения возникающие в ДНК.
Воновония ПШУ	Прямая реактивация повреждений ДНК.
Репарация ДНК.	Эксцизионная и индуцируемая репарация.
	Репарация неспаренных нуклеотидов.
	Метелирование ДНК и «горячие точки мутагенеза».

\sim						
Co	CT	าลา	RV	ſТ	еп	IP;

<u>(</u> Игнатьев И.И.),

ЕСТЕСТВЕННО-ГЕОГРАФИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ЗООЛОГИИ И ОБЩЕЙ БИОЛОГИИ

Вопросы для промежуточной аттестации (зечёта) по дисциплине «Молекулярная биология»

- 1. Предмет, задачи и методы молекулярной биологии.
- 2. Первичная и вторичная структура белков.
- 3. Структура глобулярных и фибриллярных белков.
- 4. Принципы действия ферментов.
- 5. Регуляция ферментативной активности.
- 6. Белки в роли ферментов и переносчиков.
- 7. Генетическая роль нуклеиновых кислот.
- 8. Первичная структура нуклеиновых кислот.
- 9. Макромолекулярная структура нуклеиновых кислот.
- 10. Упаковка генетического материала.
- 11. Организация геномов вирусов, про- и эукариот.
- 12. Биосинтез нуклеиновых кислот. Матричный синтез.
- 13. Основные принципы репликации.
- 14. Репликация ДНК у вирусов и прокариот.
- 15. Подвижные генетические элементы геномов про и эукариот.
- 16. Топологические проблемы репликации.
- 17. Особенности репликации у эукариот.
- 18. Транскрипция генов про-, эукариот и вирусов.
- 19. РНК-полимеразы. Цикл транскрипций.
- 20. Регуляторные элементы генов, транскрибируемых РНК-полимеразой.
- 21. Энхансеры и сайленсоры транскрипции генов.
- 22. Транскрипция генов РНК и ДНК-содержащих вирусов.
- 23. Процессинг первичных транскриптов.
- 24. Генетический код и его свойства.
- 25. Трансляционный аппарат клетки.
- 26. Трансляция генетического кода.
- 27. Регуляция экспрессии генов.
- 28. Структура и функции белков.
- 29. Репарация ДНК.
- 30. Экстрохромосомные элементы клетки.

составитель.	
Unashed	(Игнатьев И.И.)

ЕСТЕСТВЕННО-ГЕОГРАФИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ЗООЛОГИИ И ОБЩЕЙ БИОЛОГИИ

Примерный перечень тем рефератов/докладов/сообщений по дисциплине «Молекулярная биология»

- 1. Ферменты, используемые в генетической инженерии.
- 2. Получение гормона роста и инсулина методами генетической инженерии.
- 3. Методы секвенирования нуклеотидных последовательностей ДНК.
- 4. Методы молекулярной биологии.
- 5. Теломеразы, теломераза: старение, рак.
- 6. Химико-ферментативный синтез генов.
- 7. Полимеразная цепная реакция и тестирование наследственных заболеваний.
- 8. ДНК-теломеразы и проблемы молекулярной геронтологии.
- 9. Динамическое репрограмирование трансляции.
- 10. Молекулярные шаперонины и их роль в фолдинге полипептидов.
- 11. РНК-репликазы и перспективы внеклеточного синтеза белков.
- 12. Биологически активные нейропептиды.
- 13. Роль протеолитических ферментов в апоптозе.
- 14. Топология и конформация ДНК.
- 15. Картирование геномов.
- 16. Сравнение структурных особенностей про- и эукариотических генов.
- 17. Геномика и геносистематика.
- 18. Мобильные генетические элементы и видообразование.
- 19. Организация и эволюция ядерного генома.
- 20. Международная научная программа «Геном человека».
- 21. ДНК-диагностика наследственных и инфекционных заболеваний.
- 22. Полимеразная цепная реакция и генные зонды для мониторинга окружающей среды.
- 23. Геномная дактилоскопия и её использование в популяционных исследованиях.
- 24. Рак болезнь генома.
- 25. Генная терапия: методы и перспективы.
- 26. Молекулярная биология вируса иммунодефицита человека.
- 27. Технология рекомбинантных ДНК.
- 28. Клонирование животных: теория и практика.
- 29. Трансгеноз: настоящее и будущее.
- 30. Микроокружение ДНК и биологические часы.
- 31. Апоптоз: молекулярные и клеточные механизмы.
- 32. Иммунологическая память.
- 33. Мембранный транспорт.

\sim				
$C \alpha$	ста	RИ	геп	ır.

11 20	
Vikarbel	(Игнатьев И.И.)

ЕСТЕСТВЕННО-ГЕОГРАФИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ЗООЛОГИИ И ОБЩЕЙ БИОЛОГИИ

Примеры тестов для текущей аттестации по дисциплине «Молекулярная биология»

«Молекулярная биология»
1. Полинуклеотидная цепь при синтезе молекул ДНК и РНК образуется за счет связей между:
а) остатками сахаров нуклеотидов
б) остатками фосфорных кислот и сахаров нуклеотидов
в) азотистыми основаниями и остатками сахаров нуклеотидов
г) азотистыми основаниями и остатками фосфорных кислот нуклеотидов.
2. Число водородных связей, возникающих в комплементарной паре оснований аденинтимин молекулы ДНК, равно:
a)1
6)2
в) 3
г) 4.
3. Полный оборот двойной спирали ДНК в В-форме приходится на:
а) 5 пар нуклеотидов
б) 10 пар нуклеотидов
в) 15 пар нуклеотидов
г) 20 пар нуклеотидов
4. Соединение двух полинуклеотидовых цепей в спирали ДНК осуществляется за счет связей:
а) только ионных
б) только водородных
в) гилрофобных и ионных

г) водородных и гидрофобных

5. Назовите нуклеиновую кислоту, которая имеет небольшой размер, и вторичная структура которой имеет три большие петли, что придает ей форму листа клевера. а) и-РНК
б) ДНК
в) т-РНК
г) и-РНК4.
6. В каком случае верно указан состав нуклеотида ДНК?
а) рибоза, остаток фосфорной кислоты, тимин
б) фосфорная кислота, урацил, дезоксирибоза
в) остаток фосфорной кислоты, дезоксирибоза, аденин
г) рибоза, гуанин, остаток фосфорной кислоты.
7. Репликация – это:
1) синтез РНК на ДНК-матрице
2) удвоение цепи ДНК
3) синтез белка на матрице и-РНК
4) процесс возникновения мутаций
8.Скорость репликации у прокариот составляет (в нуклеотидах/секундах):
1) 25
2) 100
3) 50
4) 2500
9. У кишечной палочки репликоном является:
1) ядро
2) цитоплазма
3) хромосома
4) вся клетка
10. Нить ДНК, синтезируемая в виде фрагментов Оказаки называется:
1) запаздывающая
2) ведущая
3) двойная
4) одинарная

11. Топоизомераза выполняет функцию:
1) полимеризация ДНК
2) устранение супервитков ДНК
3) спирализация ДНК
4) соединение фрагментов Оказаки
12. Репликон – это:
1) мультиэнзимный комплекс, связанный с ДНК
2) единица репликации
3) белок, ответственный за процесс репликации
4) ведущая цепь ДНК
13. Роль гена-регулятора:
а) содержит информацию о структуре белка-репрессора;
б) содержит информацию о структуре белков-ферментов;
в) "включает" и "выключает" структурные гены;
г) содержит информацию о структуре и-РНК;
д) регулирует работу функциональных генов.
14. Спиралевидное состояние полипептидной цепи является структурой белка:
а) первичной;
б) вторичной;
в) третичной;
г) четвертичной
15. Связи, стабилизирующие третичную структуру в глобулярных белках:
а) водородные;
б) пептидные;
в) гидрофобные взаимодействия;
г) фосфодиэфирные.
16. Белки актин и миозин выполняют функцию:
а) транспортную;
б) защитную;
г) сократительную
17. Фолдинг белка – это:

а) процесс спонтанного сворачивания полипептидной цепи в уникальную нативную пространственную структуру;
б) связывание белками молекул воды;
в) расщепление полипептидной цепи под действием ферментов.
18. Как называется термостабильный фермент, осуществляющий ПЦР?
1) синтетаза;
2) праймаза;
3) Тад-полимераза;
4) ревертаза.
19. Секвенирование – это:
1) размножение отдельных участков ДНК;
2) определение нуклеотидных последовательностей ДНК;
3) разделение фрагментов ДНК.
20. Какой из методов секвенирования основан на химической деградации фрагмента ДНК, радиоктивномеченного с одного конца?
1) метод Сенгера;
2) метод Максама-Гилберта;
3) автоматическое секвенирование.
21. Скорость продвижения фрагметов ДНК в агарозном геле зависит:
1) от длины фрагмента ДНК;
2) от нуклеотидного состава фрагмента ДНК;
3) от внешних условий.
22. Рестрикционные карты – это:
1) расположение участков ДНК для различных видов;
2) светящиеся фракции ДНК;
3) фракции ДНК, гибридизировавшиеся с радиоктивно-меченным зондом.
Составитель:
(Игнатьев И.И.),