Государственное образовательное учреждение «Приднестровский государственный университет им. Т.Г. Шевченко» Рыбницкий филиал

Кафедра автоматизации технологических процессов и производств

«УТВЕРЖДАЮ» зав. кафедрой АТПП, доцент_____ В.Е. Федоров Протокол № ______ 2024 г.

Фонд оценочных средств

по дисциплине

«Сопротивление материалов»

Направление подготовки 2.15.03.02 «Технологические машины и оборудование» профиль

«Машины и оборудование промышленных предприятий»

квалификация
<u>бакалавр</u>
форма обучения
<u>заочная</u>

ГОД НАБОРА 2022

Паспорт фонда оценочных средств по дисциплине «Сопротивление материалов»

1. **В результате изучения дисциплины «Сопротивление материалов»** у обучающихся должны быть сформированы следующие компетенции

Код	Формулировка компе-	Код и наименование индикатора достижения
компетенции	тенции	компетенции
	Общепрофессионал	ьные компетенции (ОПК)
		ИД-10ПК-1 Применяет методы математического и
		компьютерного моделирования, средства авто-
	Способен применять есте-	матизированного проектирования в теоретиче-
	ственнонаучные и об-	ских и расчетно- экспериментальных исследова-
	щеинженерные знания,	хвин
ОПК-1	методы математического	ИД-2 _{ОПК-1} Применяет знания о свойствах кон-
	анализа и моделирования	струкционных материалов для изготовления ма-
	в профессиональной дея-	шиностроительных изделий
	тельности	ИД-3 _{ОПК-1} Применяет знания о характере техно-
		логических процессов для изготовления маши-
		ностроительных изделий
		ИД-10ПК-5 Работает с нормативно-технической
		документацией, применяет в профессиональной
	C	деятельности отраслевые стандарты, правила и
	Способен работать с нормативно- технической до-	другие нормативные документы
	кументацией, связанной с	ИД-20ПК-5 Понимает конструкцию технического
ОПК-5	профессиональной дея-	объекта по чертежу, демонстрирует первичные
	тельностью, с учетом стан-	навыки выполнения конструкторских докумен-
	дартов, норм и правил	тов на основе стандартов ЕСКД
		ИД-3 _{ОПК-5} Выполняет чертежи машинострои-
		тельных изделий с требованиями к точности и
		качеству изготавливаемой продукции

1. Программа оценивания контролируемой компетенции:

Текущая аттеста- ция	Контролируемые модули, разделы (темы) дисциплины и их наименование *	Код контролиру- емой компетен- ции (или ее ча- сти)	Наименование оценочного средства**
1	Раздел 1. Сопротивление	ОПК-1, ОПК-5	Тесты №1-4 CM
2	материалов.	ОПК-1, ОПК-5	Контрольная работа № 1
Проможе	точная аттестация	ОПК-1, ОПК-5	Контрольная работа № 1-2
промежу	точная аттестация	ОПК-1, ОПК-5	Вопросы к зачёту

Государственное образовательное учреждение «Приднестровский государственный университет имени Т.Г. Шевченко» Рыбницкий филиал

Кафедра «Автоматизации технологических процессов и производств»

Тест

по дисциплине «Сопротивление материалов»

Залание №1

- 1. Сопротивление материалов рассматривает задачи, где наиболее существенными являются:
 - 1. свойства деформируемых тел
 - 2. законы движения тела
 - 3. верны оба варианта
 - 4. нет правильного ответа
 - 2. Способность конструкции выдерживать заданную нагрузку, не разрушаясь это:
 - 1. Прочность
 - 2. Жесткость
 - 3. Деформирование
 - 4. Устойчивость
- 3. Свойство конструкции изменять свои геометрические размеры и форму под действием внешних сил это:
 - 1. Прочность
 - 2. Жесткость
 - 3. Деформирование
 - 4. Устойчивость
- 4. Способность конструкции к деформированию в соответствие с заданным нормативным регламентом это:
 - 1. Прочность
 - 2. Жесткость
 - 3. Деформирование
 - 4. Устойчивость
- 5. Свойство конструкции сохранять при действии внешних сил заданную форму равновесия это:
 - 1. Прочность
 - 2. Жесткость
 - 3. Деформирование
 - 4. Устойчивость
 - 6. Прочностной надежностью называется:
- 1. отсутствие отказов, связанных с разрушением или недопустимыми деформациями элементов конструкции
- 2. наличие отказов, связанных с разрушением или недопустимыми деформациями элементов конструкции
 - 3. отсутствие отказов,
 - 4. нет правильного варианта ответа
- 7. Свойство тела восстанавливать свою форму после снятия внешних нагрузок называется:
 - 1. Упругостью
 - 2. Пластичностью
 - 3. Ползучестью
 - 4. Верны все варианты
- 8. Свойство тела сохранять после прекращения действия нагрузки, или частично полученную при нагружении, деформацию называют:

- 1. Упругостью
- 2. Пластичностью
- 3. Ползучестью
- 4. Нет правильных вариантов
- 9. Свойство тела увеличивать деформацию при постоянных внешних нагрузках называют:
 - 1. Упругостью
 - 2. Пластичностью
 - 3. Ползучестью
 - 4. Верны все варианты

10. Сосредоточенные силы – это силы:

- 1. действующие на небольших участках поверхности детали
- 2. действующие на значительных участках поверхности детали
- 3. приложены в каждой частице материала
- 4. верны все варианты

11. Распределенные силы – это силы:

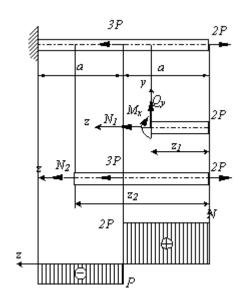
- 1. действующие на небольших участках поверхности детали
- 2. действующие на значительных участках поверхности детали
- 3. приложены в каждой частице материала
- 4. верны все варианты

12. Объемные или массовые силы — это силы:

- 1. действующие на небольших участках поверхности детали
- 2. действующие на значительных участках поверхности детали
- 3. приложены в каждой частице материала
- 4. верны все варианты
- 13. Модели разрушения представляют собой уравнения, связывающие параметры работоспособности элемента конструкции в момент разрушения с параметрами, обеспечивающими прочность. Эти уравнения (условия) называют:
 - 1. условиями прочности
 - 2. условиями устойчивости
 - 3. условиями текучести
 - 4. условиями равновесия
- 14. В зависимости от условий нагружения статическое разрушение, длительное статическое разрушение, малоцикловое статическое разрушение, усталостное разрушение называют:
 - 1. четырьмя моделями разрушения:
 - 2. пятью моделями разрушения
 - 3. четырьмя моделями равновесия
 - 4. четырьмя моделями равновесия

15. Сопротивление материалов зависит от:

- 1. величин действующего усилия,
- 2. длительности самого воздействия.
- 3. верны условия 1, 2;
- 4. верно условие 2
- 16. Растяжение (сжатие) это вид деформации стержня, при котором:
 - 1. происходит изменение его первоначальной длины.
 - 2. происходит изменение его первоначального объема
 - 3. не происходит изменение его первоначальной длины
 - 4. нет правильного варианта
- 17. Вид деформации, при котором одна часть стержня смещается относительно другой называется:
 - 1. Сдвигом


- 2. Растяжением (сжатием)
- 3. Кручением
- 4. Изгибом
- 18. Вид деформации, при котором нагрузка прикладывается к телу в виде пары сил в его поперечной плоскости, (при этом в поперечных сечениях тела возникает только один внутренний силовой фактор крутящий момент) называют:
 - 1. Сдвигом
 - 2. Растяжением (сжатием)
 - 3. Кручением
 - 4. Изгибом
- 19. Вид деформации, при котором происходит искривление осей прямых брусьев или изменение кривизны осей кривых брусьев называют:
 - 1. Сдвигом
 - 2. Растяжением (сжатием)
 - 3. Кручением
 - 4. Изгибом
- 20. Совокупность нормальных и касательных напряжений, возникающих на всевозможных площадках, проходящих через данную точку называют:
 - 1. Напряженным состоянием
 - 2. Состоянием покоя
 - 3. Состоянием равновесия
 - 4. Состоянием усталости

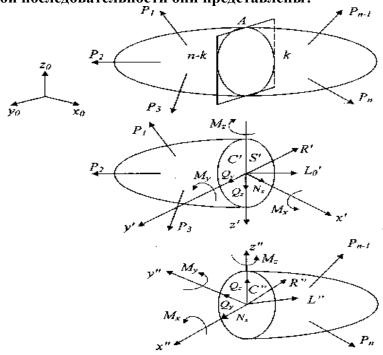
Ответ на задание №1

Вопрос	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ответ	1	1	3	2	4	1	1	2	3	1	2	3	1	1	3	1	1	3	4	1

Задание №2

1. Чему равна нормальная сила (N) в опоре (опорная реакция)?

- 1. P
- 2. P
- 3. 5P
- 4. 3P


2. Какие усилия возникают при растяжении (сжатии)?

- 1. изгибающий момент (Ми)
- 2. поперечная сила (Q)
- 3. крутящий момент (Мк)
- 4. продольная сила (N),

3. Продольная сила (N), является:

1. равнодействующей всех внутренних сил, возникающих в каждой точке этого сечения и направленных параллельно оси стержня

- 2. равнодействующей всех внешних сил, возникающих в каждой точке этого сечения и направленных параллельно оси стержня
- 3. равнодействующей всех внутренних сил, возникающих в каждой точке этого сечения и направленных перпендикулярно оси стержня
- 4. равнодействующей всех внешних сил, возникающих в каждой точке этого сечения и направленных перпендикулярно оси стержня
- 4. На рисунке изображено: упругое тело, левая отсеченная часть, правая отсеченная часть. В какой последовательности они представлены?

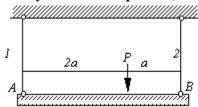
1. упругое тело, левая отсеченная часть, правая отсеченная часть

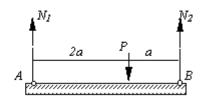
- 2. левая отсеченная часть, упругое тело, правая отсеченная часть
- 3. упругое тело, правая отсеченная часть, левая отсеченная часть,
- 4. правая отсеченная часть, упругое тело, левая отсеченная часть,

5. Ниже приведены основные условия:

$$\sum_{i=1}^{n} P_{ix_{0}} = 0; \quad \sum_{i=1}^{n} M_{x_{0}}(P_{i}) = 0;$$

$$\sum_{i=1}^{n} P_{iy_{0}} = 0; \quad \sum_{i=1}^{n} M_{y_{0}}(P_{i}) = 0;$$

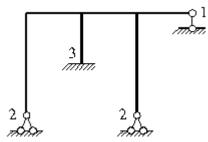

$$\sum_{i=1}^{n} P_{iz_{0}} = 0; \quad \sum_{i=1}^{n} M_{z_{0}}(P_{i}) = 0;$$


- 1. динамики
- 2. кинематики
- 3. статики
- 4. себестоимости продукции

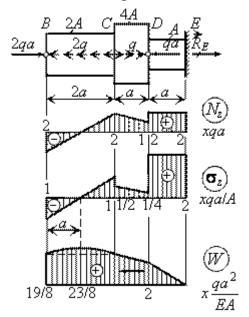
6. Главный вектор и главный момент системы внутренних усилий, возникающие в левой, условно отсеченной части бруса:

1. равны по величине и одинаковы по направлению главному вектору и главному моменту системы внутренних усилий, возникающих в правой условно отсеченной части.

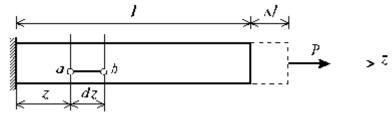
- 2. в два раза больше по величине но противоположны по направлению главному вектору и главному моменту системы внутренних усилий, возникающих в правой условно отсеченной части.
- 3. разные по величине и противоположны по направлению главному вектору и главному моменту системы внутренних усилий, возникающих в правой условно отсеченной части.
- 4. равны по величине и противоположны по направлению главному вектору и главному моменту системы внутренних усилий, возникающих в правой условно отсеченной части.
 - 7. Определить усилия в стержнях,



- 1. $N_1=1/3\times P$; $N_2=2/3\times P$
- 2. $N_1=2/3\times P$; $N_2=1/3\times P$
- 3. $N_1=1/3\times P$; $N_2=1/3\times P$
- 4. $N_1=0$; $N_2=1/3\times P$
- 8. Общее число внутренних усилий в статически определимых задачах совпадает с количеством уравнений равновесия для пространственной системы сил и связано с числом возможных взаимных перемещений одной условно отсеченной части тела по отношению к другой и равно:
 - 1. 3
 - 2. 6
 - 3. 9
 - 4. 5
- 9. Эпюры внутренних усилий позволяет визуально найти положение опасного сечения, где действуют наибольшие по модулю внутренние усилия. В этом сечении при прочих равных условиях наиболее вероятно:
 - 1. разрушение конструкции при предельных нагрузках
 - 2. разрушение конструкции при минимальных нагрузках
 - 3. верны оба варианта
 - 4. нет правильного ответа
 - 10. Нормальное напряжение во всех точках поперечного сечения равно где:

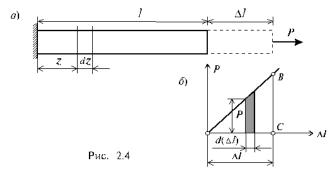

$$\sigma = \frac{N}{A}$$

- 1. А площадь поперечного сечения, N нормальная сила
- 2. N площадь поперечного сечения, А нормальная сила
- 3. А площадь поперечного сечения, N изгибающий момент
- 4. А площадь поперечного сечения, N крутящий момент
- 11. Общее число внутренних усилий в статически определимых задачах совпадает с количеством уравнений равновесия для плоской системы сил и связано с числом возможных взаимных перемещений одной условно отсеченной части тела по отношению к другой и равно:
 - 1. 1
 - 2. 3
 - 3. 6
 - 4. верны все варианты


12. На рисунке показана:

- 1. статически неопределимая система
- 2. статически определимая система
- 3. верны оба варианта
- 4. нет правильного ответа
- 13. На рисунке показана: 1- эпюра продольных сил, 2 напряжения, 3 перемещения ступенчатого бруса. Расположите в правильной последовательности.

- 1. 3, 2, 1
- 2. 1, 2, 3
- 3. 2, 3, 1
- 4. 2, 1, 3
- 14. На рисунке указана величина ΔL . Она обозначает:

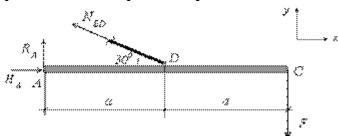

- 1. относительное удлинение
- 2. абсолютное удлинение
- 3. нормальное напряжение
- 4. касательное напряжение
- 15. В пределах малых деформаций при простом растяжении или сжатии закон Гука записывается в следующем виде (нормальные напряжения в поперечном сечении прямо пропорциональны относительной линейной деформации (ε)) $\sigma = E\varepsilon$, где:

1.
$$\varepsilon = \frac{\Delta l}{l}$$

2.
$$\varepsilon = \frac{\Delta z}{z}$$

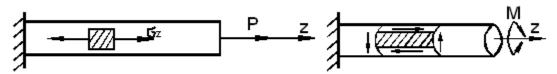
- 3. верны оба варианта
- 4. нет правильного ответа
- 16. Величина E в законе Гука представляет собой коэффициент пропорциональности, называемый _____ Его величина постоянна для каждого материала. Он характеризует жесткость материала, т.е. способность сопротивляться деформированию под действием внешней нагрузки.
 - 1. модулем упругости материала первого рода (модуль продольной упругости)
 - 2. коэффициентом сопротивления
 - 3. верны оба варианта
 - 4. нет правильного ответа

17. На рисунке показан:

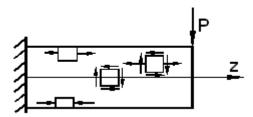

- 1. график изменения величины сжатия стержня Δl в зависимости от силы P
- 2. график изменения величины удлинения стержня Δl в зависимости от силы Р
 - 3. график изменения величины удлинения стержня Δl в зависимости от силы Δl
 - 4. график изменения величины удлинения стержня P в зависимости от силы Δl
- 18. Внешние силы, приложенные к упругому телу и вызывающие изменение геометрии тела, совершают_____ на соответствующих перемещениях. Вставьте недостающее определение.
 - 1. работу W
 - 2. энергию деформирования U
 - 3. кинетическую энергию движения частиц тела K
 - 4. верны варианты 1, 2
- 19. Под действием внешних сил приложенных, к упругому телу, в упругом теле накапливается_____. Вставьте недостающее определение.
 - 1. работу *W*
 - 2. кинетическая энергия движения частиц тела K
 - 3. потенциальная энергия его деформирования U
 - 4. верны варианты 1, 2
- 20. При действии динамических внешних нагрузок часть работы внешних сил превращается:
 - 1. в кинетическую энергию движения частиц тела К
 - 2. работу *W*
 - 3. энергию деформирования U
 - 4. нормальное напряжение

Ответ на тест №2

Вопрос	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ответ	1	4	1	1	3	4	1	6	1	1	2	1	2	2	3	1	2	2	3	1


- 1. Данная формула $U = \frac{P^2 l}{2EA}$ выражает:
 - 1. потенциальную энергию деформации
 - 2. кинетическую энергию
 - 3. работу, при условии, что кинетическая энергия равна 0
 - 4. верны варианты 1 и 3
- 2. Данная формула $\sigma_{max} = \frac{N_{max}}{A} \leq [\sigma] = \sigma_{adm}$ определяет:
- 1. условие прочности обеспечивающее безопасную эксплуатацию конструкции, при растяжении (сжатии)
- 2. условие экономичности обеспечивающее безопасную эксплуатацию конструкции, при растяжении (сжатии)
- 3. условие прочности не обеспечивающее безопасную эксплуатацию конструкции, является при растяжении (сжатии)
 - 4. верны варианты 1 и 3
- 3. Проектный расчет выполняют с целью определения размеров поперечных сечений элемента конструкции при известных рабочих нагрузках и материале (допускаемых напряжений). Площадь поперечного сечения определяют из выражения:
 - 1. $A \ge \frac{N_{max}}{[\sigma]}$

 - 2. $[N] \leq [\sigma]$ 3. $\sigma_c = \frac{N}{A_b} \leq \alpha R_b$ 4. $\sigma_{max} = \frac{N_{max}}{A}$
- 4. Определить допустимую нагрузку F из условий если площадь сечения стержня 5 см², расчетное сопротивление материала стержня R=200 МПа



- 1. F = 200 kH
- 2. F = 50 kH
- 3. F = 2.5 kH
- 4. F = 25 kH
- 5. Напряженным состоянием тела в точке называют:
- 1. совокупность нормальных и касательных напряжений, действующих по всем площадкам (сечениям), содержащим данную точку
- 2. совокупность нормальных и касательных сил, действующих по всем площадкам (сечениям), содержащим данную точку
- 3. совокупность нормальных и касательных перемещений, действующих по всем площадкам (сечениям), содержащим данную точку
- 4. совокупность моментов, действующих по всем площадкам (сечениям), содержащим данную точку
- 6. Система напряжений (тензор напряжений Коши), приложенных к частице тела, должна удовлетворять:
 - 1. условиям движения
 - 2. условиям неравенства $a \ge a \cos \alpha + \cos \beta = 2 \cos \frac{1}{2} (\alpha + \beta) \cos \frac{1}{2} (\alpha \beta)$

- 3. условиям равновесия
- 4. верны все варианты
- 7. Напряжение вида $\sigma = \frac{1}{3} (\sigma_x + \sigma_y + \sigma_z)$ называют:
 - 1. средним напряжением
 - 2. максимальным напряжением
 - 3. минимальным напряжением
 - 4. верны все варианты
- 8. Величины $\varepsilon_x = \frac{\Delta(d_x)}{d_x}$; $\varepsilon_y = \frac{\Delta(d_y)}{d_y}$; $\varepsilon_z = \frac{\Delta(d_z)}{d_z}$ называют:
 - 1. относительными удлинениями или деформациями частиц тел
 - 2. относительными удлинениями или деформациями частиц тел
 - 3. средним напряжением
 - 4. максимальным перемещением
- 9. Величину $\varepsilon_0 = \frac{1}{3}(\varepsilon_x + \varepsilon_y + \varepsilon_z)$ называют:
 - 1. средней деформацией
 - 2. средним напряжением
 - 3. относительным удлинением
 - 4. верны все варианты
- 10. На рисунке представлены основные виды напряженно-деформационного состояния (НДС):

- 1. растяжение (сжатие) и кручение
- 2. растяжение (сжатие) и изгиб
- 3. изгиб и кручение
- 4. верны варианты 2 и 3
- 11. На рисунке представлен основной вид напряженно-деформационного состояния (НДС):

- 1. кручение
- **2.** изгиб
- 3. сдвиг
- 4. растяжение (сжатие)
- 12. Геометрические характеристики это:
- 1. показатели рентабельности (параметры), определяющие размеры, форму, расположение поперечного сечения однородного по упругим свойствам деформируемого элемента конструкции (и, как следствие, характеризующие сопротивление элемента различным видам деформации)
- 2. показания работоспособности (параметры), определяющие размеры, форму, расположение поперечного сечения однородного по упругим свойствам деформируемого элемента конструкции (и, как следствие, характеризующие сопротивление элемента различным видам деформации

- 3. числовые величины (параметры), определяющие размеры, форму, расположение поперечного сечения однородного по упругим свойствам деформируемого элемента конструкции (и, как следствие, характеризующие сопротивление элемента различным видам деформации
 - 4. верны все варианты
 - 13. На рисунке приведена схема для расчёта___ момента, который равен:

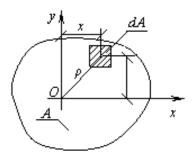
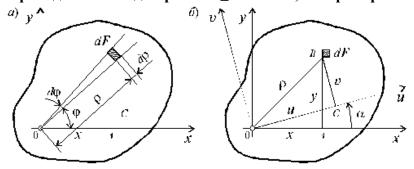
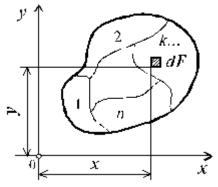



Рис. 4.1


- 1. статического момента $S_x = \int_A \ y \, dA; \ S_y = \int_A \ x \, dA$
- 2. осевого момента инерции $J_x=\int_A y^2 dA; J_y=\int_A x^2 dA$
- 3. центробежный момент инерции $J_{\rho}=\int_{A} \rho^{2} dA$
- 4. верны все варианты
- 14. На рисунке приведена схема для расчёта_ момента, который равен:

- 1. статического момента $S_x = \int_A \ y \, dA; \ S_y = \int_A \ x \, dA$
- 2. осевого момента инерции $J_x=\int_A y^2 dA; J_y=\int_A x^2 dA$
- 3. центробежный момент инерции $J_{
 ho}=\int_{A}~
 ho^{2}~dA$
- 4. полярного момента инерции

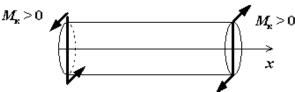
$$J_{p} = \int\limits_{1}^{2} \rho^{2} dA = \int_{0}^{2\pi} \! d\phi \int_{0}^{R} \! \rho^{3} \, d\rho = \frac{R^{4}}{4} \int_{0}^{2\pi} \! d\phi = \frac{\pi R^{4}}{2}$$

15. На рисунке приведена схема для расчёта_момента, который равен:

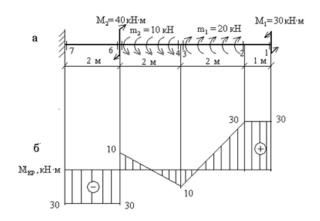
- 1. статического момента $S_x = \int_A \ y \, dA; \ S_y = \int_A \ x \, dA$
- 2. осевого момента инерции $J_x=\int_A\ y^2dA;\,J_y=\int_A\ x^2dA$
- 3. центробежный момент инерции $J_{
 ho}=\int_{A} \,
 ho^{2} \, dA$
- 4. полярного момента инерции $J_{\rm p}=\int_A \rho^2 dA=\int_0^{2\pi} d\varphi \int_0^R \rho^3 d\rho=\frac{R^4}{4}\int_0^{2\pi} d\varphi=\frac{\pi R^4}{2}$
- 16. Оси, относительно которых центробежный момент инерции равен нулю, а осевые моменты инерции принимают экстремальные значения называются:
 - 1. главными осями.
- 2. если эти оси являются также и центральными, то они называются главными центральными осями
- 3. если эти оси являются также и приведенными, то они называются главными приведенными осями
 - 4. верны варианты 1 и 2
 - 17. Осевые моменты инерции относительно главных осей называются:
 - 1. главными моментами инерции.
 - 2. дополнительными моментами инерции
 - 3. не значительными моментами инерции
 - 4. верны варианты 1 и 2
 - 18. Осевой момент сопротивления относительно рассматриваемой оси это:
- 1. величина равная моменту инерции относительно той же оси отнесенному к расстоянию до наиболее удаленной от этой оси точки равная $W_x = \frac{J_x}{y_{max}}$; $W_y = \frac{J_y}{y_{max}}$
- 2. величина равная моменту инерции относительно той же оси отнесенному к расстоянию до наиболее удаленной от этой оси точки равная $J_x = \int_A y^2 dA$; $J_y = \int_A x^2 dA$
- 3. величина равная моменту инерции относительно той же оси отнесенному к расстоянию до наиболее удаленной от этой оси точки равная $S_x = \int_A y \, dA$; $S_y = \int_A x \, dA$
 - 4. верны варианты 2 и 3
 - 19. Момент ____равен $W_x = \frac{J_\rho}{\rho_{max}}$. Вставьте наименование момента.
 - 1. полярный момент сопротивления
 - 2. осевой момент сопротивления
 - 3. главный момент инерции
 - 4. центробежный момент инерции

20. Радиус инерции равен:

- 1. расстоянию от оси х до той точки, в которой следует условно сосредоточить площадь сечения A, чтобы *момент инерции* одной этой точки был равен моменту инерции всего сечения
- 2. расстоянию от оси х до той точки, в которой следует условно сосредоточить площадь сечения A, чтобы момент инерции одной этой точки был равен моменту инерции всего сечения

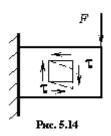

- 3. расстоянию от оси х до той точки, в которой следует условно сосредоточить площадь сечения A, чтобы *момент инерции* одной этой точки был равен моменту инерции всего сечения
- 4. расстоянию от оси х до той точки, в которой следует условно сосредоточить площадь сечения A, чтобы *момент инерции* одной этой точки был равен моменту инерции всего сечения

Ответ на тест №3

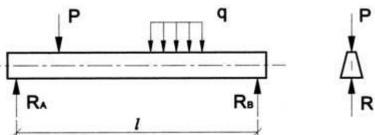

Вопрос	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ответ	4	1	1	4	1	3	1	2	1	1	2	3	1	4	4	4	1	1	1	2

Задание №4

- 1. Деформацию, возникающую при действии на стержень пары сил, расположенной в плоскости, перпендикулярной к его оси называют:
 - 1. кручением
 - 2. сдвиг
 - 3. растяжение (сжатие)
 - 4. изгиб
 - 2. Стержни круглого или кольцевого сечения, работающие на кручение, называют:
 - 1. валами
 - 2. балками
 - 3. стойками
 - 4. осями
 - 3. Параметры, задаваемые для расчёта валов:
 - 1. угловая скорость $\omega_z = \frac{d\varphi}{dt}$
 - 2. передаваемая мощность $N = T\omega$
 - 3. скручивающий момент $T = 30 \frac{N}{\pi n}$
 - 4. верны все три параметра
- 4. Правило знаков для крутящего момента: его положительное направление соответствует:

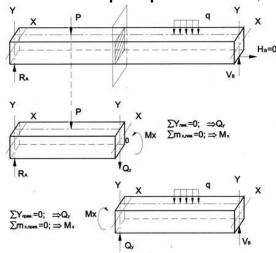


- 1. повороту сечения по ходу часовой стрелки, если смотреть на сечение со стороны внешней нормали
- 2. повороту сечения против часовой стрелки, если смотреть на сечение со стороны внешней нормали
- 3. перпендикулярно оси вала, если смотреть на сечение со стороны внешней нормали
 - 4. нет правильного ответа
 - 5. Чему равен крутящий момент в сечении 3 согласно расчётной схеме:

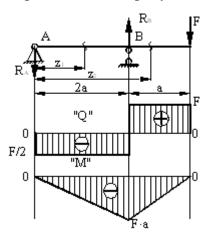


- 1. $M_{\kappa p3} = 10 \text{ кHm}$
- 2. $M_{KD3} = -10 \text{ KHM}$
- 3. $M_{KD3} = -30 \text{ KHM}$
- 4. $M_{\text{KD3}} = 30 \text{ KHM}$
- 6. Крутящий момент M_k , в сечении равен $M_k = \int_F \rho \tau dF$ где τ это:
- 1. касательное напряжение
- 2. предел текучести
- 3. предел прочности
- 4. модуль упругости
- 7. Условие, приведенное в формуле $au_{max} = \frac{|M_x|_{max}}{W_{
 ho}} \leq [au]$ это__ и формулируется:
- 1. Условие прочности при кручении и формулируется следующим образом: «максимальные крутящие моменты, возникающие в опасном сечении вала, не должны превышать допускаемых напряжений»
- 2. Условие прочности при кручении и формулируется следующим образом: «минимальные касательные напряжения, возникающие в опасном сечении вала, не должны превышать допускаемых напряжений»
- 3. Условие прочности при кручении и формулируется следующим образом: «максимальные касательные напряжения, возникающие в опасном сечении вала, обязательно превышают допускаемые напряжения
- 4. Условие прочности при кручении: «максимальные касательные напряжения, возникающие в опасном сечении вала, не должны превышать допускаемых напряжений»
 - 8. Наибольшие напряжения, возникающие при кручении вала, возникают:
 - 1. на поверхности вала,
 - 2. в центральной части они значительно меньше и
 - 3. на продольной оси равны нулю
 - 4. верны варианты 1 и 3
- 9. Чему равны напряжения возникающие при кручении вала на продольной оси?
 - 1. 0
 - 2. максимальные напряжения
 - 3. намного меньше максимальных
 - 4. верны варианты 1 и 3
- 10. Имеются два равнопрочных вала из одного материала, одинаковой длины, передающие одинаковый крутящий момент; один из них круглого поперечного сечения, а другой квадратного. Во сколько раз квадратный вал тяжелее круглого?
 - 1. 2,2
 - 2. 1,22

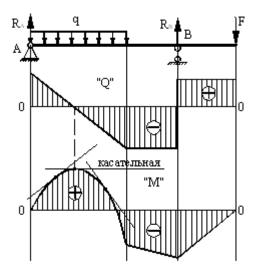
- 3. 3,4
- 4. 5,0
- 11. Деформацию, представляющую собой искажение первоначально прямого угла малого элемента бруса под действием касательных напряжений τ называют:



- 1. сдвигом
- 2. растяжением (сжатием)
- 3. кручением
- 4. изгибом
- 12. Развитие деформации, указанной в п.11 приводит к разрушению, называемому:
 - 1. срезом
 - 2. скалыванием
 - 3. верны варианты 1 и 2
 - 4. верен вариант 1
- 13. Изгибом называется вид нагружения бруса, при котором к нему прикладывается момент, лежащий в плоскости:
 - 1. проходящей через продольную ось
 - 2. проходящей через поперечную ось
 - 3. проходящей в центре балки
 - 4. проходящей через точку опоры балки
- 14. Изгиб называется плоским или прямым, если плоскость действия нагрузки проходит через:



- 1. центральную ось инерции сечения
- 2. главную центральную ось инерции сечения
- 3. ось инерции сечения
- 4. нет правильного варианта ответа
- 15. Если изгибающий момент M_x является единственным внутренним силовым фактором, то такой изгиб называется:
 - 1. чистым изгибом
 - 2. плоский изгибом
 - 3. нет правильного ответа
 - 4. верны варианты 1 и 2
- 16. Свойство систем сохранять их состояние равновесия или движения во времени под действием малых возмущений называют:
 - 1. устойчивостью
 - 2. упругостью
 - 3. текучестью


- 4. пластичностью.
- 17. Если внешняя сила вращает отрезанную часть балки по часовой стрелке, то сила является:
 - 1. положительной
 - 2. отрицательной
 - 3. равнодействующей
 - 4. верны все варианты
 - 18. Назовите внутренние силовые факторы возникающие при изгибе:

- 1. изгибающий момент $\mathbf{M}_{\mathbf{x}}$;продольная сил $\mathbf{Q}_{\mathbf{y}}$;
- 2. продольная сила Q_{ν} ; поперечная сила N_{x} ;
- 3. изгибающий момент M_x ; продольная сила Q_v ; поперечная сила N_x ;
- 4. изгибающий момент M_x ; поперечная сила N_x ;
- 19. Почему на эпюре Q, приведенной на рисунке параллельна оси 0-0?

- 1. на балку действует только сосредоточенная нагрузка
- 2. на балку не действуют только распределенная нагрузка
- 3. верны варианты 1 и 2
- 4. нет правильного ответа
- 20. Почему эпюра М, приведенная на рисунке на одном из участков имеет криволинейный характер?

- 1. изгибающий момент возникает под действием распределенной нагрузки
- 2. изгибающий момент возникает под действием сосредоточенной нагрузки
- 3. изгибающий момент возникает под действием сосредоточенного момента
- 4. верны все варианты

Ответ на тест №4

Вопрос	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ответ	1	1	4	1	2	1	4	1	1	2	1	3	1	2	1	1	1	1	3	1

Критерии оценки:

- оценка «отлично» выставляется студенту, если процент правильных ответов составляет 90-100%;
- оценка «хорошо» выставляется студенту, если процент правильных ответов составляет 60-89%;
- оценка «удовлетворительно» выставляется студенту, если процент правильных ответов составляет 30–59%;
- оценка «неудовлетворительно» выставляется студенту, если процент правильных ответов составляет 0–29%.

Составитель: преподаватель ______ Бондарь А.А.

Государственное образовательное учреждение «Приднестровский государственный университет имени Т.Г. Шевченко» Рыбницкий филиал

Кафедра «Автоматизации технологических процессов и производств»

Темы контрольных (расчётно-графических) работ

Методические указания для всех работ

- 1. Для выполнения работ необходимо выполнить следующее условие:
- по предпоследней цифре зачётной книжки выбрать вариант задания расчётной;
- по последней цифре зачётной книжки выбрать вариант расчётной схемы.

Работы, выполненные не по своему варианту, не засчитываются.

- 2. Не следует приступать к выполнению расчетно-графических работ, не изучив соответствующего раздела курса и не решив самостоятельно рекомендованных задач. Если студент слабо усвоил основные положения теории и не до конца разобрался в приведенных примерах, то при выполнении работ могут возникнуть большие затруднения. В результате студент не приобретает необходимых знаний и оказывается неподготовленным к экзамену.
- 3. Все работы выполняются в соответствии с требованиями ЕСКД по шаблонам предложенным преподавателем (листы с рамкой и штампом).
- 4. В заголовке расчетно-графической работы должны быть четко написаны: номер контрольной работы, название дисциплины, фамилия, имя и отчество студента (полностью), название факультета и специальности, учебный шифр.
- 5. Каждую расчетно-графическую работу следует выполнять на листах формата А4, чернилами (не красными), четким почерком, с полями.
- 6. Перед решением каждой задачи надо выписать полностью ее условие с числовыми данными, составить аккуратный эскиз в масштабе и указать на нем в числах все величины, необходимые для расчета.
- 7. Решение должно сопровождаться краткими, последовательными и грамотными без сокращения слов объяснениями и чертежами, на которых все входящие в расчет величины должны быть показаны в числах. Необходимо избегать многословных пояснений и пересказа учебника: студент должен знать, что язык техники формула и чертеж. При пользовании формулами или данными, отсутствующими в учебнике, необходимо кратко и точно указывать источник (автор, название, издание, страница, номер формулы).
- 8. Необходимо указать размерность всех величин и подчеркнуть окончательные результаты.
- 9. Числовые показатели необходимо округлять до принятых значений, точность расчётов принимается в соответствии с практической необходимостью. Студент вправе сам определять точность вычислений.
 - 10. В работе четко должен прослеживаться алгоритм её выполнения.

Коэффициент Пуас-

сона

μ

Таблица 1

Характеристика	материа	ла		Бронз	А птолит		
Havyyayanayyya	Обоз	Ед. из-	Сталь	1	Алюми- ний	Чугун	Дерево
Наименование	н.	мер		a	нии		
Модуль упругости	E	МПа	2.10^{5}	1.10^{5}	$0,7\cdot10^5$	$1,2\cdot10^5$	1.10^{4}
Предел текучести	σ_T	МПа	240	150	210	-	-
Предел прочности на	G 2	МПа	360	240	300	180/600	100/45
растяжение-сжатие	σ_P	IVIIIU	300	240	300	180/000	100/43

0,25

0,34

0,3

0,25

Общие справочные данные для решения всех задач

0,45

Коэффициент темпе-				22·10-			
ратурного расшире-	α	1/град	12·10 ⁻⁶	6	$24 \cdot 10^{-6}$	11·10 ⁻⁶	4.10^{-6}
ния							

- 11. При вычислении допускаемых напряжений при растяжении-сжатии нормируемый коэффициент запаса прочности n необходимо принять:
 - -для пластичных материалов 1,5;
- для хрупких материалов 3 (коэффициенты запаса при растяжении-сжатии рекомендуется считать одинаковыми);
 - для дерева при растяжении 10, при сжатии 4,5.
 - 12. Допускаемые напряжения при сдвиге [т] следует принять:
 - для дерева 2 МПа;
 - для пластичных материалов по соответствующим теориям прочности.
- 13. Допускаемые напряжения при изгибе рекомендуется считать равными допускаемым напряжениям при растяжении-сжатии.
- 14. Допускаемые напряжения при изгибе рекомендуется считать равными допускаемым напряжениям при растяжении-сжатии.
 - 15. При проверке жесткости балок допускаемый прогиб следует принимать:
 - для шарнирно-опертых балок l/200;
 - для консольных балок l/100,

 Γ де l – длина пролета (консоли) балки.

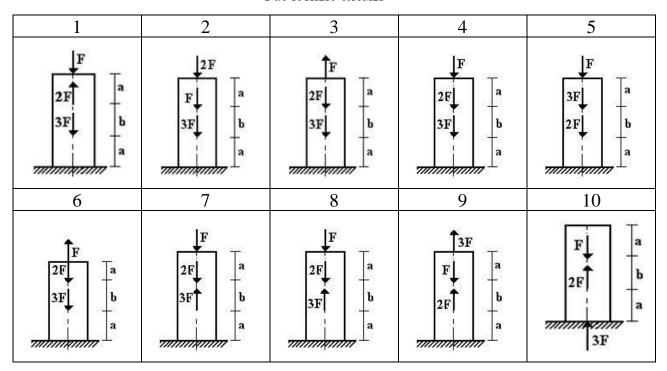
16. Принятые для решения учебных задач справочные данные являются примерными и не отражают всего разнообразия видов материалов и их характеристик.

Задача 1. Расчет стержней постоянного поперечного сечения при растяжении-сжатии

Для стального стержня круглого поперечного сечения диаметром D (табл. 1a). Требуется:

- 1. построить эпюры продольной силы;
- 2. определить грузоподъемность стержня, если [σ] = 240 МПа;
- 3. определить полное удлинение стержня, если $E = 2.10^5 \, \text{M}\Pi \text{a}$.

Данные для расчёта приведены в табл. 1, 1а


Таблица 1

Выбор вариантов

Расчётная		_	нные для расч	ёта	
схема	Вариант	D, м	а, м	b, м	F, кН
1	0	0,01	1	1,1	12
2	1	0,02	2	1,2	10
3	2	0,03	3	1,3	12
4	3	0,04	3	1,4	6
5	4	0,05	2	1,5	8
6	5	0,06	1	1,6	10
7	6	0,07	2	1,7	6
8	7	0,08	3	1,8	8
9	8	0,09	1	1,9	6
10	9	0,1	1	1,0	12

Таблица 1а

Расчётные схемы

Задача 2. Расчет стержней постоянного поперечного сечения при растяжении-сжатии с распределенной нагрузкой

Консольный стержень нагружен равномерно распределенными нагрузками интенсивностью q_1 и q_2 и сосредоточенными силами F_1 и F_2 .

Построить эпюру нормальной силы.

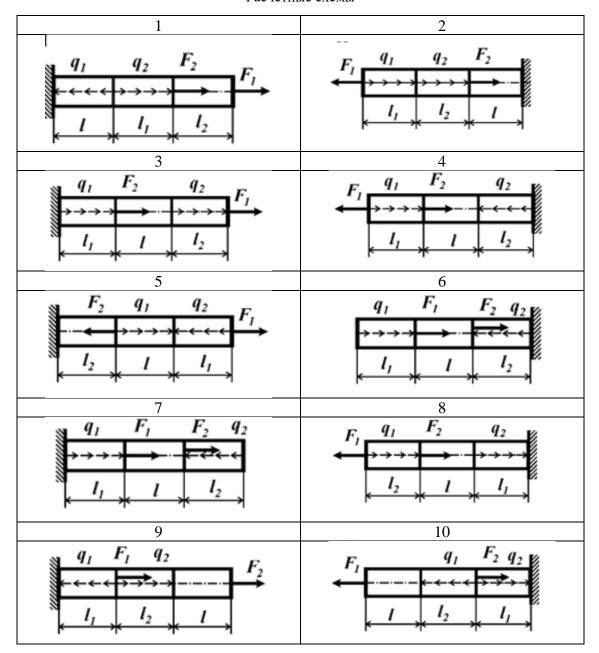

Данные для расчёта приведены в табл.2, 2а

Таблица 2

Выбор вариантов

				Данные д	пя расчёта			
Расчёт-			Нагр	узки			Размеры	
ная схема	Вариант	F_1	F_2	q_1	q_2	l	l_1	l_2
		кН	кН	кН/м	кН/м	М	м	М
1	0	-1,0	2,0	-1,0	1,0	0,5	1,0	2,0
2	1	2,5	-2,5	2,0	-2,0	3,0	1,5	1,5
3	2	-2,0	1,0	1,0	-2,0	2,0	2,0	2,5
4	3	1,5	-1,5	-2,0	1,0	1,5	2,5	1,0
5	4	-1,0	3,0	1,0	2,0	0,5	3,0	1,0
6	5	1,5	-2,0	-1,0	2,0	2,5	2,0	1,5
7	6	-2,0	1,5	2,0	-1,0	2,0	2,5	2,5
8	7	3,0	-1,0	-2,0	-1,0	1,0	1,0	2,0
9	8	-1,5	2,0	-1,0	1,0	1,0	1,5	1,5
10	9	2,0	-3,0	1,0	2,0	1,5	2,0	1,0

Таблица 2а

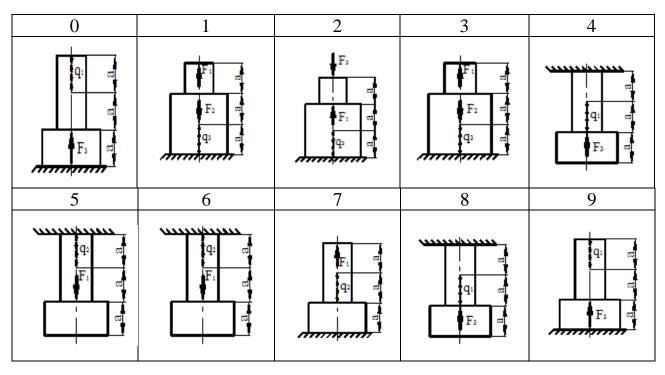
Задача 3. Построение эпюр продольных усилий и перемещений при растяжении сжатии стержня переменного поперечного сечения при действии распределенной нагрузки.

Для вертикального стержня, имеющего жесткую заделку на одном из концов, (табл.

3a)

Необходимо:

- 1. Вычертить схему в произвольном масштабе.
- 2. Определить значения нормальной силы на каждом участке стержня.
- 3. Построить эпюру нормальной силы.
- 4. Определить удлинение стержня.


Данные для расчёта приведены в табл.3, 3а, площадь поперечного сечения узкого участка A=0,2 м², широкого участка 2A.

Выбор вариантов

			•	анные для				
Расчётная		Размеры			Нагр	узки		
схема	Вариант	a,	q_1	q_2	<i>q</i> ₃	F_1	F_2	F_3
		М	кН/м	кН/м	кН/м	кН	кН	кН
1	01	0,8	5		30	10	35	10
2	02	1	10		25	15	30	20
3	03	1,2	15		20	20	25	30
4	04	1,4	20		15	25	20	40
5	05	1,6	25		10	30	15	10
6	06	1,8	30		5	35	10	20
7	07	2	5		30	40	5	30
8	08	0,8	10		25	10	35	40
9	09	1	15		20	15	30	10
10	10	1,2	20		15	20	25	20

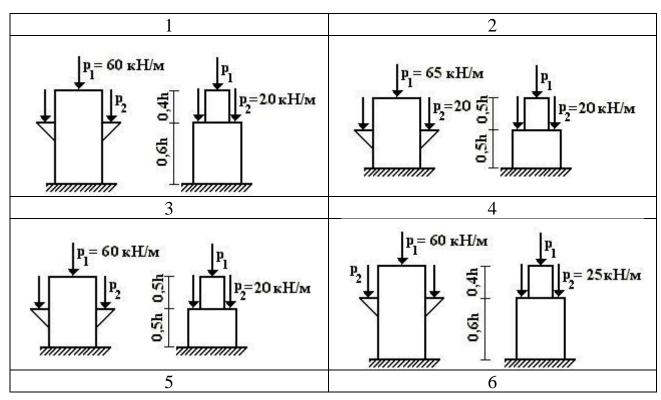
Таблица За

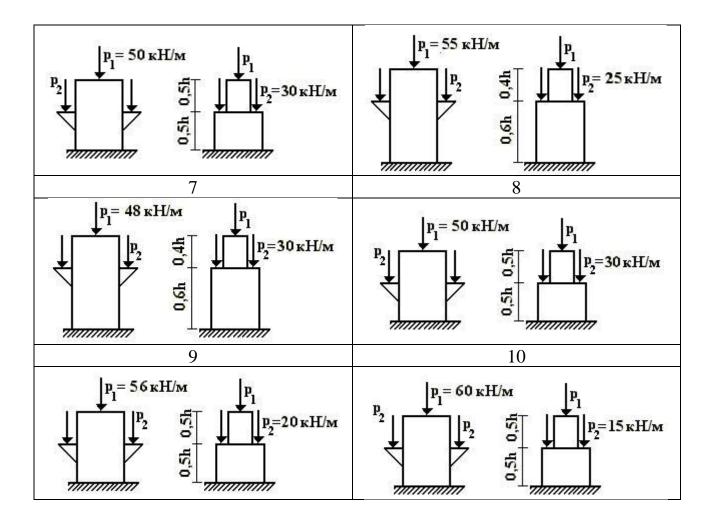
Расчётная схема

Задача 4. Статически определимые стержни, работающие на растяжение-сжатие

Сопоставить объемы кирпичной кладки стены двухэтажного здания высотой h (табл. 4a), запроектированного в двух вариантах: a) стена постоянного сечения; б) ступен-

чатая из двух частей. От чердачного перекрытия и кровли на погонный метр стены передается нагрузка интенсивности P_I – от междуэтажных перекрытий – P_2 Объемный вес материала равен γ .


Данные для расчёта приведены в табл.4, 4а


Таблица 4

Расчётная		Данные для расчёта			
Расчетная схема	Вариант	γ	h,		
		кH/м ³	М		
1	0	18	2,7		
2	1	19	2,8		
3	2	20	2,9		
4	3	21	3,0		
5	4	22	3,1		
6	5	18	3,2		
7	6	19	3,3		
8	7	20	3,4		
9	8	21	3,5		
10	9	22	3,6		

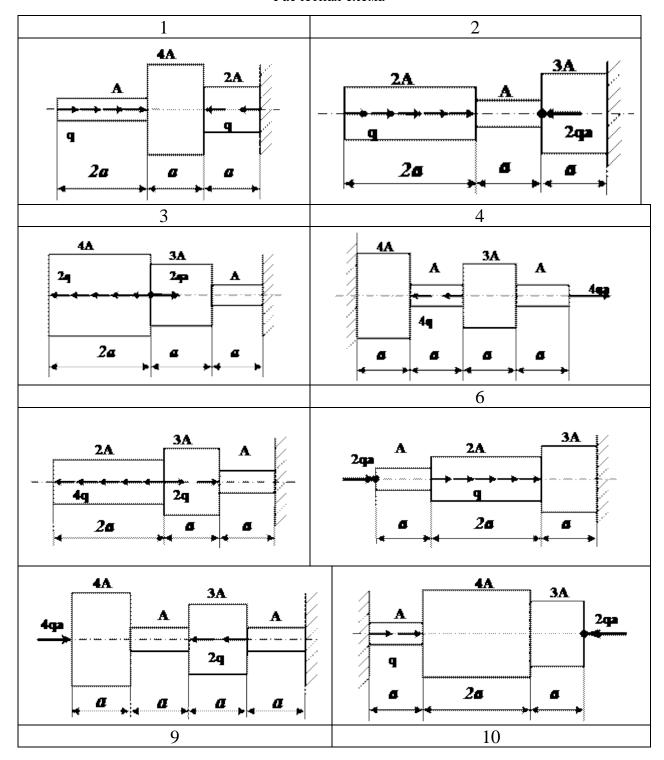
Таблица 4а

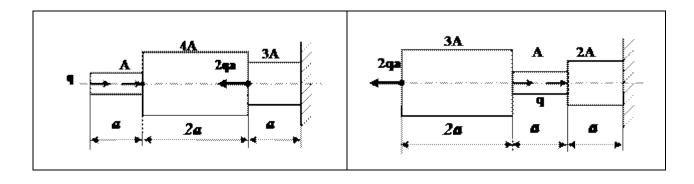
Расчётная схема

Задача 5. Построение эпюр продольных усилий, напряжений и перемещений при растяжении – сжатии стержня переменного поперечного сечения

Построить эпюры продольных сил, напряжений и перемещений для стержня переменного сечения площадью A и длиной a.

Данные для расчёта приведены в табл.5, 5а


Таблица 5


Выбор варианта								
Расчётная		Данные для расчёта						
схема	Вариант	q	а	A				
		кН/м	М	M^2				
1	0	18	2,7	0,5				
2	1	19	2,8	1,0				
3	2	20	2,9	0,8				
4	3	21	3,0	0,3				
5	4	22	3,1	1,2				
6	5	18	3,2	1,3				
7	6	19	3,3	0,5				
8	7	20	3,4	0,6				

9	8	21	3,5	1,5	
10	9	22	3,6	1,0	

Таблица 5а

Расчётная схема

Задача 6. Построение эпюр продольных усилий, напряжений и перемещений при растяжении – сжатии стержня переменного поперечного сечения

Ступенчатый стержень находится под действием осевых сил.

- 1. Построить эпюры продольных сил, нормальных напряжений и перемещений.
- 2. Определить перемещение сечения I-I.

Стержень изготовлен из стали $E = 2 \cdot 10^5 \, \text{М}\Pi \text{a}$.

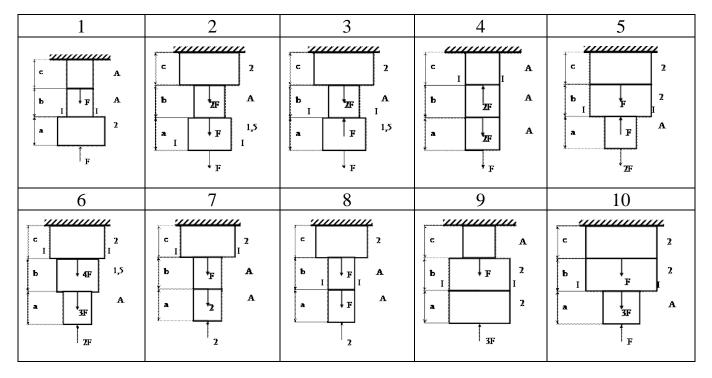

Данные для расчёта приведены в табл.6, ба

Таблица 6

Выбор варианта

Расчётная		Данные для расчёта							
схема	Вариант	Α,	a,	b,	С,	F,			
		см ²	М	М	М	кН			
01	1	10	2	2	1	100			
02	2	12	2,1	3	1,1	120			
03	3	14	2,2	2,9	1,2	130			
04	4	16	2,4	2,7	1,3	140			
05	5	18	2,6	2,8	1,4	150			
06	6	15	2,8	2,4	1,5	160			
07	7	17	2,8	2,3	1,6	170			
08	8	19	2,7	2,2	1,7	180			
09	9	18	2,9	2,1	1,8	180			
10	10	20	2,4	2,5	2	200			

Расчётные схемы

Задача 7. Расчет стержня переменного сечения, работающего на растяжение-сжатие

К консольному стержню переменного поперечного сечения (табл. 7a) приложены сосредоточенные силы F и P.

- 1. построить эпюру нормальной силы (в долях P);
- 2. построить эпюру нормальных напряжений (в долях P/S);
- 3. построить эпюру перемещений (в долях Pl/ES);
- 4. определить из условия прочности по максимальным напряжениям допустимое значение параметра нагрузки P;
- 5. при найденном значении параметра нагрузки P вычислить перемещение свободного конца стержня.

Принять: материал – сталь 40; [n]=2; σ_T =320 Мпа.

Данные для расчёта приведены в табл. 7, 7а

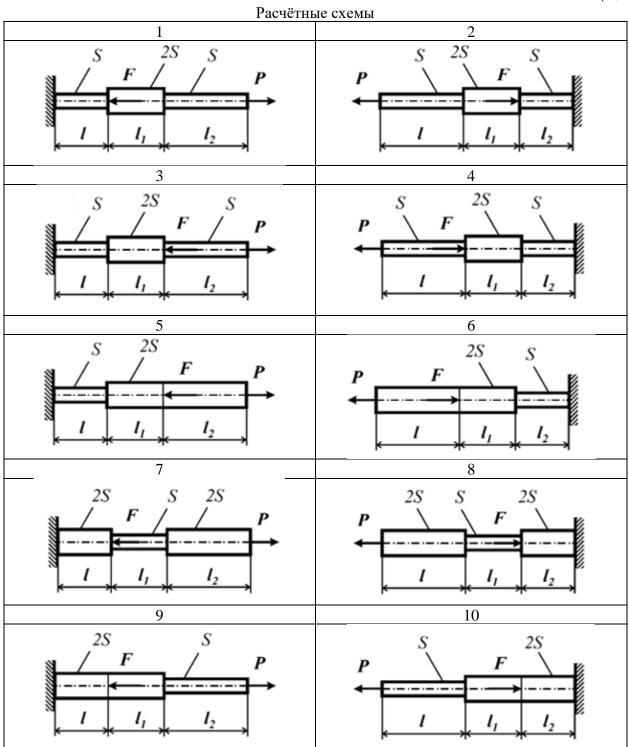

Выбор варианта

Таблица 7

	Данные для расчёта									
Расчётная			Разм	иеры		Нагр	узки			
схема	Вариант	l	l_1	l_2	S	F	Р			
		М	М	М	M^2	кН	кН			
1	0	1,0	1,0	1,3	0,2	1,0	4			
2	1	1,5	0,5	0,7	0,4	3,0	6			
3	2	2,0	1,2	0,6	0,5	2,0	5			
4	3	3,0	2,0	0,8	0,1	1,5	4			
5	4	2,0	1,3	1,5	0,3	1,0	-4			

6	5	1,0	0,8	1,4	0,9	1,0	-5
7	6	1,0	0,5	1,3	1,0	3,0	-3
8	7	1,5	1,0	2,0	0,4	2,0	4
9	8	2,0	1,0	0,4	0,3	3,0	6
10	9	2,0	2,2	0,8	0,5	1,5	5

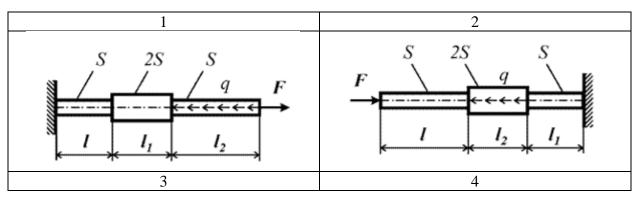
Таблица 7а

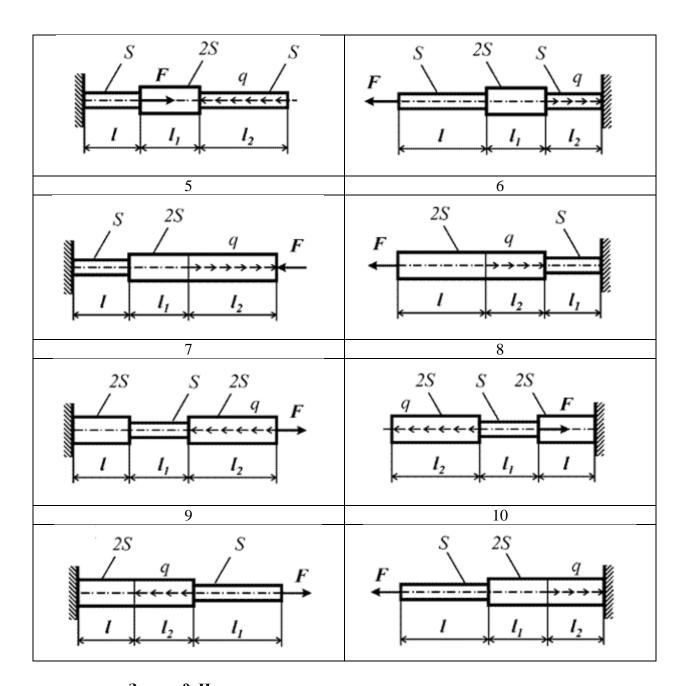
Задача 8. Расчет стержня переменного сечения, работающего на растяжение-сжатие

К консольному стержню переменного поперечного сечения (табл. 8а) приложены продольные силы.

Требуется:

- 1. построить эпюру нормальной силы (в долях ql) и эпюру нормальных напряжений (в долях ql/S);
- 2. определить из условия прочности по максимальным напряжениям допустимое значение параметра нагрузки q;
 - 3. построить эпюру перемещений (в долях ql^2/ES)
 - 4. при найденном значении q вычислить перемещение свободного конца стержня. Принять: материал Ст 3; [n] = 2; l = 20 см; S = 2 см²; $\sigma_T = 230$ Мпа. Данные для расчёта приведены в табл.8, 8а


Таблица 8


Выбор варианта

Расчётная	Данные для расчёта							
схема	Вариант	l_1/l	l ₂ /l	F/ql				
1	0	1,0	4,0	2,0				
2	1	1,5	3,0	1,0				
3	2	2,0	3,5	1,5				
4	3	3,0	3,5	2,0				
5	4	3,0	3,0	1,0				
6	5	1,0	3,0	1,5				
7	6	1,0	4,0	2,0				
8	7	1,5	3,0	1,0				
9	8	2,0	2,5	1,5				
10	9	2,0	2,5	1,0				

Таблица 8а

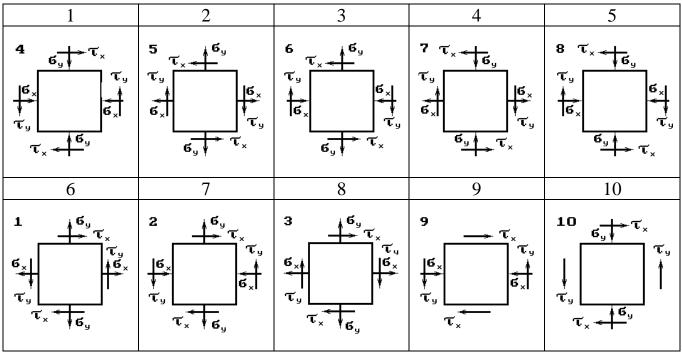
Расчётные схемы

Задача 9. Исследование плоского напряженного состояния.

Стальной кубик (табл. 9а) находится под действием сил, создающих плоское напряженное состояние (одно из трех главных напряжений равно нулю).

Требуется найти:

- 1. главные напряжения и направление главных площадок;
- 2. максимальные касательные напряжения, равные наибольшей разности главных напряжений;
 - 3. главные деформации ε_1 , ε_2 , ε_3
- - 5. относительное изменение объема;
 - 6. удельную потенциальную энергию деформации.


Данные для расчёта приведены в табл.9, 9а

Выбор варианта

Расчётная		Данные для расчёта								
схема	Вариант	$\sigma_{\scriptscriptstyle X}$	σ_{y}	$ au_{\scriptscriptstyle X}$						
	Бариант	МПа	МПа	МПа						
01	1	10	50	20						
02	2	20	60	90						
03	3	30	70	100						
04	4	40	80	10						
05	5	50	90	60						
06	6	60	100	70						
07	7	70	60	80						
08	8	80	70	90						
09	9	90	80	40						
10	10	100	90	50						

Таблица 9а

Расчётные схемы

Задача 10. Исследование плоского напряженного состояния.

На расчетной схеме (рис 10) указаны две элементарные площадки, на гранях которых возникают нормальные и касательные напряжения.

Требуется для схемы а):

- 1. Указать главную площадку общего положения.
- 2. На главной площадке присвоить главным напряжениям соответствующие индексы.

3. По главным напряжениям определить нормальные и касательные напряжения в площадке, положение которых задается нормалью n.

Требуется для схемы б):

1. По напряжениям, заданным на площадке общего положения, определить главные напряжения и их направление.

Данные для расчёта приведены в табл10, и рис. 10

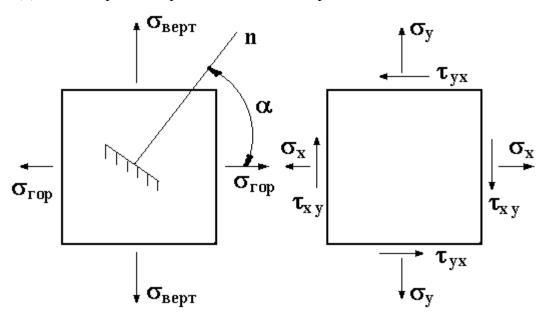


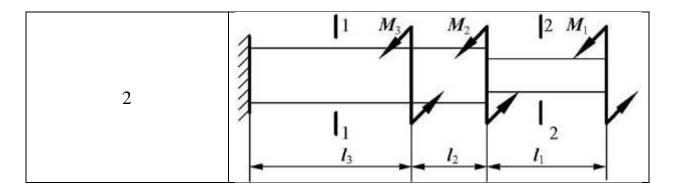
Рисунок 10. Расчётная схема

Таблица 10

Выбор варианта

	Данные для расчёта								
Вариант	σ_{rop}	σ_{Bept}	α,	$\sigma_{\scriptscriptstyle X}$	σ_{y}	$ au_{xy}$			
	МПа	МПа		МПа	МПа	МПа			
0	-20	-48	60	46	0	-14			
1	18	-40	-45	30	0	-50			
2	0	40	-40	0	-41	-13			
3	46	30	-45	50	20	30			
4	-30	-50	45	42	0	32			
5	0	-40	-70	20	40	-40			
6	0	50	50	28	20	-38			
7	49	30	-50	-50	0	-12			
8	-20	-48	-40	0	33	21			
9	-39	0	-20	0	-12	22			

Задача 11. Подбор сечения составного вала, работающего на кручение Данные для расчёта приведены в табл.11, 11а Требуется:


- 1. Вычертить схему стержня в масштабе. Отрицательные нагрузки направить в сторону, противоположную показанной на рисунке. На рисунке поставьте размеры стержня и значения нагрузки в численном виде.
 - 2. Постройте в масштабе эпюру крутящих моментов.
- 3. Из условия прочности подобрать размеры поперечных сечений вала на каждом участке.
- 4. Проверить условие жесткости на каждом участке. Если это условие не выполняется, найти новые размеры поперечных сечений из условия жесткости.
- 5. Найти максимальные касательные напряжения на каждом участке и вычертить эпюры распределения напряжений в поперечных сечениях.
- 6. Определить углы закручивания каждого участка стержня и построить в масштабе эпюру их изменения по длине стержня.
- 7. Заменить круглое сечение вала на трубчатое с отношением внутреннего радиуса к внешнему R_1/R_2 из табл. 11.
 - 8. Определить экономию материала, полученную при такой замене.

Выбор варианта

Таблица 11

Ba-	l_1	l_2	M_1	M_2	n /n	l_3	M_3	Поперечно	ое сечение	Cvava	θ	1 /1	Материал	
ри- ант	м	М	кНм	кНм	R_1/R_2	м	кНм	1-1	2-2	Схема	град/м	h/b	1-1	2-2
0	0,5	1,1	20	-24	0,9	1,0	30	круг	квадрат	1	0,2	1,5	Бронза	Чугун
1	0,6	1,0	-10	16	0,8	0,8	-28	квадрат	круг	2	0,4	2,0	Чугун	Сталь
2	0,7	0,9	15	-20	0,7	1,0	26	круг	квадрат	1	0,6	2,5	Дюраль	Чугун
3	0,8	0,8	-15	30	0,6	1,2	-24	квадрат	круг	2	0,8	3,0	Чугун	Бронза
4	0,9	0,7	10	-20	0,5	1,0	22	круг	квадрат	1	2,0	1,0	Чугун	Сталь
5	1,0	0,6	-20	28	0,9	0,8	-20	квадрат	круг	2	1,8	1,5	Дюраль	Чугун
6	1,1	0,5	25	-28	0,8	1,2	18	круг	квадрат	1	1,6	2,0	Сталь	Чугун
7	1,2	0,8	-25	14	0,7	1,0	-16	квадрат	круг	2	1,4	2,5	Чугун	Дюраль
8	1,3	1,0	30	-10	0,6	1,2	14	круг	квадрат	1	1,2	1,0	Бронза	Чугун
9	1,0	1,0	-30	32	0,5	1,4	-10	квадрат	круг	2	1,0	1,5	Чугун	Сталь

Таблица 11а

Задача 12. Расчет составного вала, работающего на кручение. Подбор сечения.

К ступенчатому валу, состоящему из участков с круглым и кольцевым поперечным сечением (табл. 12), приложены пары сил моментами M и M_1 .

Требуется определить из условия жесткости неизвестные размеры вала, округлить его величину до ближайшей большей, соответственно равной: 30, 35, 40,45, 50, 60, 70, 80, 90, 100 мм и вычислить максимальный угол поворота поперечного сечения вала (в град).

Для этого необходимо:

7

8

9

1,2

1,0

1,3

0,2

0,1

0,2

0,1

0,8

0,5

0,4

0,1

VIII

IX

X

- 1. построить эпюру крутящего момента в долях M;
- 2. построить эпюру максимальных (для каждого типа поперечного сечения) касательных напряжений (в долях M/D^3) и изобразить распределение касательных напряжений по поперечному сечению на каждом участке стержня;
- 3. построить эпюру относительных (в долях M/GD^4) и абсолютных (в долях Ml/GD^4) углов закручивания;
 - 4. найти запас прочности вала.

Дано: M =4,0 кН×м; l =25 см; [θ]=3 град/м; материал Сталь 20, τ_{T} =160 Мпа. Данные для расчёта приведены в табл.12, 12а.

Выбор вариантов

Данные для расчёта

Таблица 12

Расчёт-Размеры Отношение ная Вари-1 d d_1 DM схема ант l_1/l l_2/l d/D M_1/M d_1/D $\kappa H \times_{\mathcal{M}}$ М М М М Ι 0 0,5 0,95 0,1 0,20,1 20 1,0 3,0 0,90 1,5 0,3 0,3 II 1 0,3 30 2,0 1,0 0,85 2,0 0,4 0,80 III 2 1,2 0,1 8,0 0,3 10 3.0 1.0 0,60 0,65 1,5 3 IV 0,5 0.2 40 1,0 2,0 0,70 1,5 1,4 0,10,65 V 4 0,4 0,2 2,0 0,6 50 2,0 1,0 0,70 0,75 2,5 VI 5 1,5 0,10,3 1,0 30 3,0 1,0 0,75 0,80 1,5 VII 6 1,6 0,3 0,5 0,8 15 1,0 3,0 0,80 0,85 0,5

10

5

10

2,0

2,0

1.0

1,0

1,0

2,0

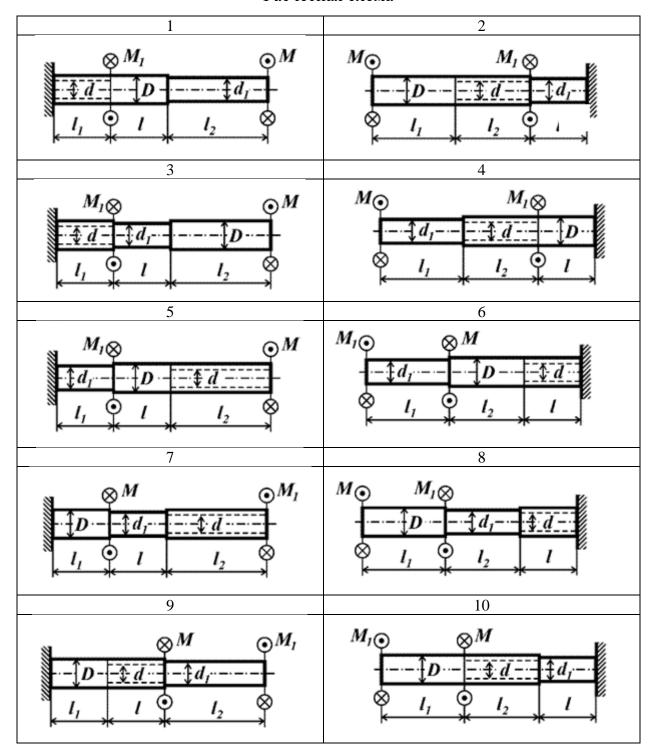
0,85

0,90

0.85

3,0

3,0


2,0

0,90

0,95

0,90

Расчётная схема

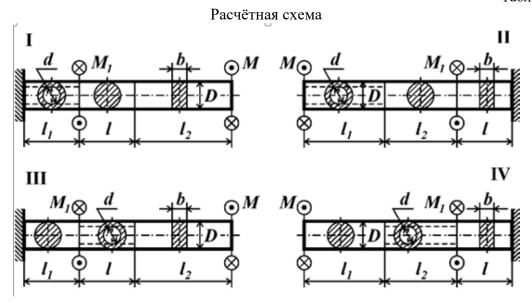
Задача 13. Расчет составного вала, работающего на кручение. Подбор сечения.

К стальному валу (табл. 13.а) приложены пары сил моментами M и M_1 .

Требуется определить из условия прочности неизвестные размеры вала, округлить его величину до ближайшей большей, соответственно равной: 30, 35, 40,45, 50, 60, 70, 80, 90, 100 мм и вычислить максимальный угол поворота поперечного сечения вала (в град).

Для этого необходимо:

1. построить эпюру крутящего момента (в долях M);


- 2. построить эпюру максимальных (для каждого типа поперечного сечения) касательных напряжений (в долях M/D^3) и изобразить распределение касательных напряжений для каждого типа поперечного сечения;
- 3. построить эпюру относительных (в долях M/GD^4) и абсолютных (в долях Ml/GD^4) углов закручивания.
- 4. Дано: $\mathit{M}=3$ кНм; $\mathit{l}=30$ см; $\tau_\mathit{T}=300$ МПа; [n]=2,0; $\mathit{G}=0,8\cdot10^5$ МПа. Данные для расчёта приведены в табл.13, 13а.

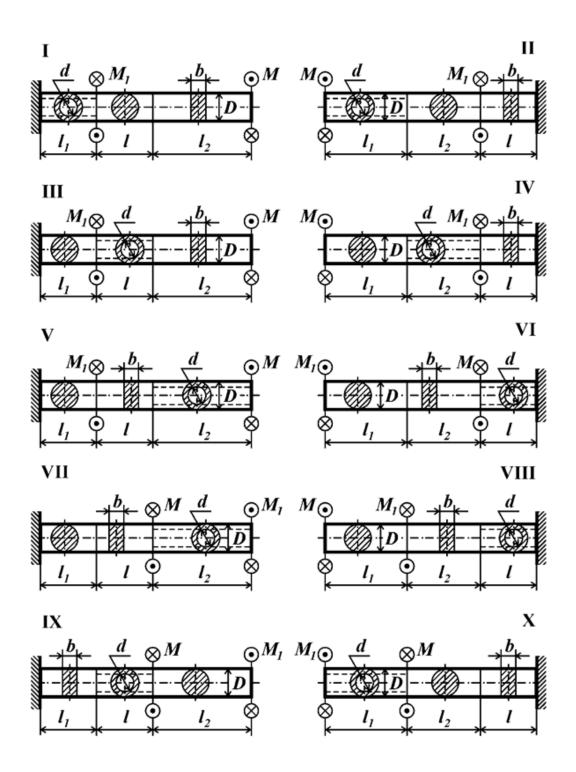

Выбор вариантов

Таблица 13

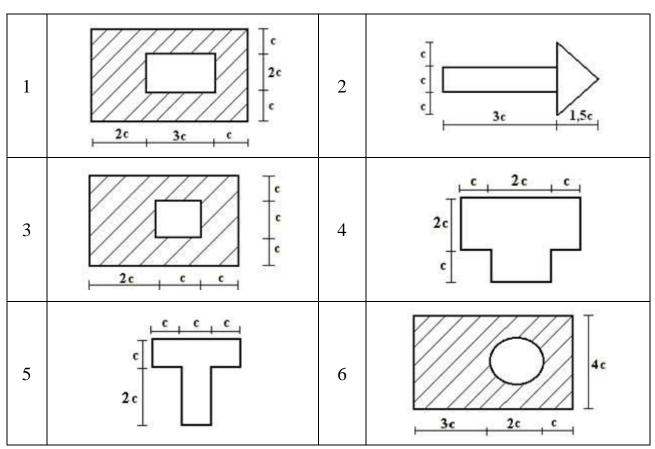
		Данные для расчёта										
Расчёт-			Разм	иеры		Отношение						
ная схема	Вари- ант	l	b	b	M	1 /1	1 /1	1/D	h/D	M /M		
	ulli	М	\mathcal{M}	М	кН×м	l_1/l	l_2/l	d/D	b/D	M_1/M		
I	0	0,1	0,2	0,5	20	1,0	3,0	0,90	0,95	1,5		
II	1	0,3	0,3	0,4	30	2,0	1,0	0,80	0,85	2,0		
III	2	1,2	0,1	0,3	10	3,0	1,0	0,60	0,65	1,5		
IV	3	1,4	0,5	0,1	40	1,0	2,0	0,65	0,70	1,5		
V	4	2,0	0,6	0,2	50	2,0	1,0	0,70	0,75	2,5		
VI	5	1,5	0,1	1,0	30	3,0	1,0	0,75	0,80	1,5		
VII	6	1,6	0,3	0,8	15	1,0	3,0	0,80	0,85	0,5		
VIII	7	1,2	0,2	0,5	10	2,0	1,0	0,85	0,90	3,0		
IX	8	1,0	0,1	0,4	5	2,0	1,0	0,90	0,95	3,0		
X	9	1,3	0,2	0,1	10	1,0	2,0	0,85	0,90	2,0		

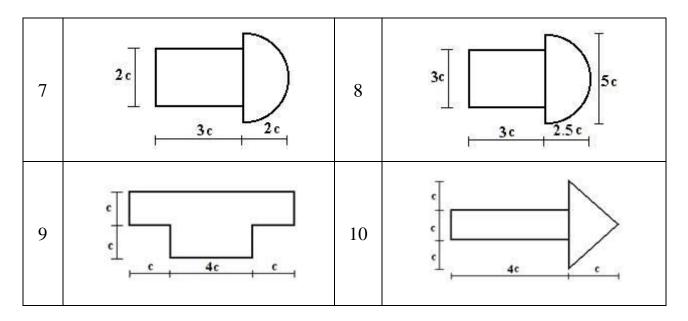
Таблица 13а

Задача 14. Расчет сложных составных несимметричных поперечных сечений.

Для сечения, изображенного на табл. 13а

Требуется:


- 1. вычертить сечение в масштабе и показать основные размеры в числах.
- 2. определить положение центра тяжести и указать положение главных центральных осей.
- 3. вычислить величину главных моментов инерции и моментов сопротивления сечения.
 - 4. определить главные радиусы инерции сечения. Данные для расчёта приведены в табл.14, 14а.

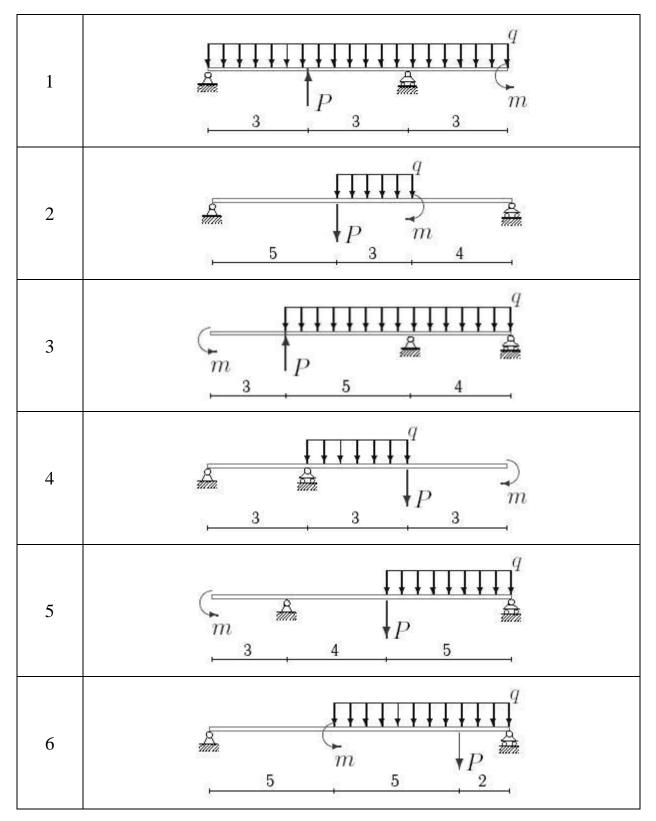

D ~	
RLIDON	вариантов
DBIOOD	baphaniob

Высер вириантев					
Вариант	Расчётная схема	c,			
		М			
0	1	0,1			
1	2	0,15			
2	3	0,2			
3	4	0,25			
4	5	0,3			
5	6	0,1			
6	7	0,15			
7	8	0,2			
8	9	0,25			
9	10	0,3			

Таблица 14а

Расчётные схемы

Задача 15. Определение внутренних усилий и перемещений двухопорных балок, работающих на поперечный изгиб


Для балки, изображенной (табл. 15а), требуется:

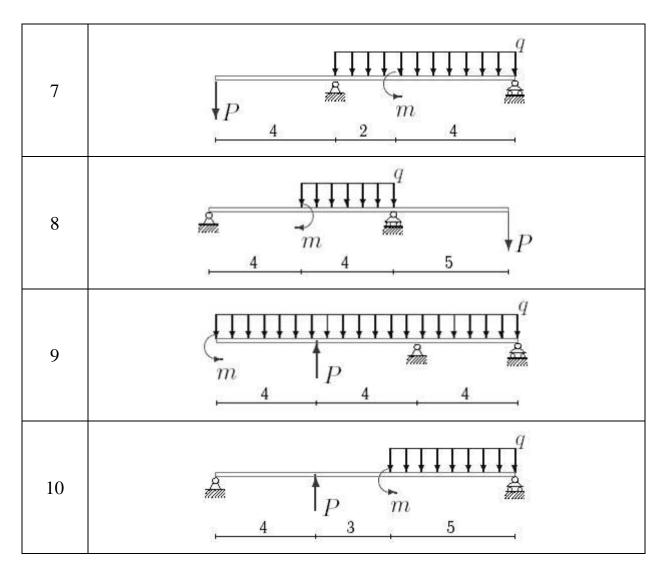

- 1. простроить эпюры моментов и поперечных сил;
- 2. указать положение опасного сечения (сечение балки с максимальным моментом);
 - 3. определить прогиб Δy балки в точке приложения силы P. Данные для расчёта приведены в табл.15, 15а.

Таблица 15

D "	Выбор вариантов Данные для расчёта					
Расчётная схема	Вариант	P	m	q		
		кН	кН×м	кН/м		
1	0	3	20	12		
2	1	6	20	28		
3	2	1	20	12		
4	3	3	10	16		
5	4	6	10	24		
6	5	9	24	20		
7	6	8	30	8		
8	7	21	30	32		
9	8	7	40	36		
10	9	18	40	36		

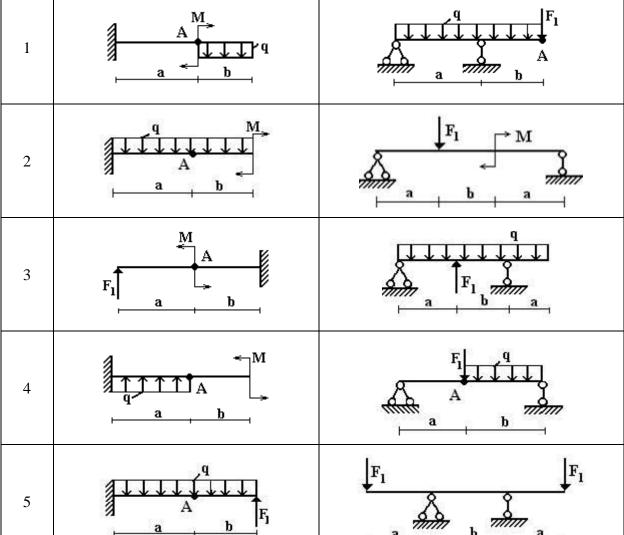
Расчётная схема

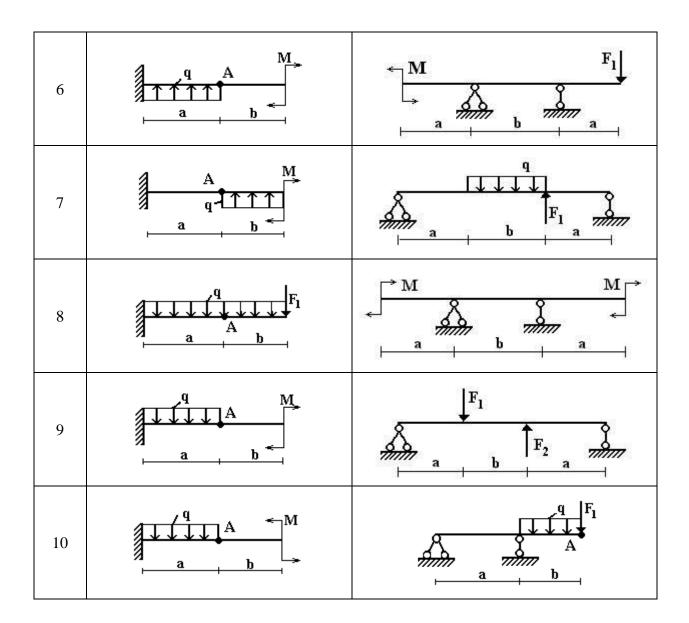
Задача 16. Подбор сечений консольных и двухопорных балок, работающих на поперечный изгиб

Для балок, изображенных на схемах 1, 2 (табл. 16a), Требуется:

- 1. простроить эпюры внутренних усилий;
- 2. указать положение опасного сечения.
- 3. для деревянной балки, изображенной на схеме 1, подобрать размеры квадратного поперечного сечения из условия прочности, если $[\sigma] = 16 \text{ M}\Pi a$;
- 4. для стальной двутавровой балки, изображенной на схеме 2, подобрать номер прокатного профиля из условия прочности.

Данные для расчёта приведены в табл.15, 15а.

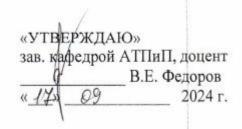

Таблица 16


		Выбор вариантов Данные для расчётов				
Расчётная		Размеры			Нагрузки	
схема	Вариант	F_1	а	b	M	q
		см ²	М	М	кН×м	кН/м
1	0	12	1	2	24	5
2	1	10	2	2	16	4

3	2	12	3	2	12	6
4	3	6	2	3	18	2
5	4	8	1	3	20	4
6	5	10	3	1	12	2
7	6	6	2	2	12	3
8	7	8	1	2	12	6
9	8	6	2	1	16	5
10		12	1	3	10	6

Таблица 16а

Расчётные схемы Ва Схемы балок ри 1 2 2



Критерии оценки:

- оценка «отлично» выставляется студенту, если работа выполнена правильно, оформлена в соответствии с требованиями ЕСКД, правильно произведены расчёты в соответствии с требуемым алгоритмом;
- оценка «хорошо» выставляется студенту, если работа выполнена правильно, соблюдён алгоритм решения, имеются расхождения требованиям ЕСКД;
- оценка «удовлетворительно» выставляется студенту, если работа выполнена правильно, оформление не соответствует требованиям ЕСКД, имеются;
- оценка «неудовлетворительно» выставляется студенту, если работа выполнена неправильно, независимо от оформления.

Составитель	преподаватель	A	Бондарь А.А.

Вопросы к зачёту по дисциплине «Сопротивление материалов для студентов III курса

направления «Технологические машины и оборудование» (3/0) профиля подготовки

«Машины и оборудование промышленных предприятий», VI семестр

- 1. Основные задачи сопротивления материалов. Деформации упругие и пластические. Основные гипотезы и допущения.
 - 2. Классификация нагрузок и элементов конструкции.
 - 3. Силы внешние и внутренние. Метод сечений.
 - 4. Напряжение полное, нормальное и касательное.
- 5. Внутренние силовые факторы при растяжении и сжатии. Эпюры продольных сил.
 - 6. Нормальное напряжение. Эпюры нормальных напряжений.
 - 7. Продольные и поперечные деформации.
 - 8. Закон Гука. Коэффициент Пуассона.
 - 9. Определение осевых перемещений поперечных сечений бруса.
 - 10. Испытание материалов на растяжение и сжатие при статическом нагружении.
 - 11. Диаграммы растяжения и сжатия пластичных и хрупких материалов.
 - 12. Напряжения предельные, допускаемые и расчётные.
- 13. Что называется пределом прочности? Пределом упругости? Пределом текучести?
- 14. Какое состояние конструкций называют предельным (опасным)? Какие нагрузки называют нормативными, расчётными?
 - 15. Какие типы задач решают с помощью условия прочности?
 - 16. Что такое статический момент площади?
 - 17. По каким формулам находят координаты центра тяжести плоской фигуры?
 - 18. Какие оси называются центральными?
- 19. Что называют осевым, полярным и центробежным моментами инерции. Какой из них может иметь отрицательное значение?
 - 20. Какой вид деформирования стержня называется кручением?
 - 21. Какой вид деформирования стержня называется сдвигом?
 - 22. Какой вид деформирования стержня называется смятием?
 - 23. Сформулировать условие прочности при кручении.
- 24. Для каких элементов болтового (заклепочного) соединения выполняется расчет на срез и смятие?
 - 25. Что такое чистый изгиб? Поперечный изгиб?
- 26. Какова последовательность построения эпюр изгибающих моментов Мх и поперечных сил Qy?
 - 27. Какая зависимость существует между величинами Мх и Qy?
- 28. Как вычисляют максимальный изгибающий момент в случае приложения распределенной нагрузки?

- 29. Записать формулы для нормальных и касательных напряжений, возникающих в стержне при изгибе.
- 30. Как изменяются нормальные и касательные напряжения по высоте сечения балки (эпюры)?
- 31. По какой формуле вычисляется напряжение, возникающее в стержне при изгибе?
 - 32. Что называется моментом сопротивления поперечного сечения при изгибе?
 - 33. Сформулируйте условие прочности при изгибе.
 - 34. Запишите дифференциальное уравнение упругой линии балки.
- 35. Какова последовательность вычисления перемещений (прогиб, угол поворота сечения) стержня методом начальных параметров?
- 36. Что такое начальные параметры при вычислении перемещений стержня при изгибе?
 - 37. Сформулируйте условие жёсткости при изгибе.
 - 38. Статические и динамические нагрузки
 - 39. Динамический расчет
 - 40. Учет сил инерции. Динамический коэффициент.
 - 41. Вычисление динамического коэффициента при осевой инерционной нагрузке
 - 42. Ударное действие нагрузки. Основные понятия.
 - 43. Основные допущения технической теории удара.

Составитель	преподаватель _	A	Бондарь А.А.
		=	