ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ПРИДНЕСТРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. Т.Г. ШЕВЧЕНКО

Бендерский политехнический филиал

Кафедра «Промышленное и гражданское строительство»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

Б1.В.10 «Конструкции из дерева и пластмасс»

Направление подготовки **2.08.03.01 «Строительство»**

Профиль подготовки **Промышленное и гражданское строительство**

> Квалификация (степень) <u>Бакалавр</u>

> > Форма обучения Заочная (3,6л, 5л)

Год набора 2020

Разработал: ст. преподаватель
/А.В. Дудник
« « « » — 2023 г.

Паспорт фонда оценочных средств по учебной дисциплине «Конструкции из дерева и пластмасс»

1. В результате изучения дисциплины «Конструкции из дерева и пластмасс» у обучающихся должны быть сформированы следующие компетенции:

Категория	Код и наименование	Код и наименование индикатора		
(группа)		достижения универсальной		
компетенций		компетенции		
Обязательные п	рофессиональные компетенции вы	пускников и индикаторы их достижения		
Теоретическая	ОПК-3	ИД-1 Описание основных сведений об		
профессиональная	Способен принимать решения в	объектах и процессах		
подготовка	профессиональной сфере,	профессиональной деятельности		
	используя	посредством		
	теоретические основы и	использования профессиональной		
	нормативную базу			
	строительства, строительной	ИД-2. Выбор метода или методики		
	индустрии и жилищно-	решения задачи		
коммунального хозяйства		профессиональной деятельности		
		ИД-5. Выбор конструктивной схемы		
		здания, оценка		
		преимуществ и недостатков выбранной		
		конструктивной схемы		
		ИД-9. Определение качества		
		строительных материалов на основе		
		экспериментальных исследований их		
		свойств		

2.Программа оценивания контролируемой компетенции:

Текущая аттестация	Контролируемые модули, разделы (темы) дисциплины и их наименование	Код контролиру емой компетенци и (или ее части)	Наименование оценочного средства
1	Проверка остаточных знаний по дисциплинам: «Сопротивление материалов», «Строительные материалы», «Архитектура зданий»		Вопросы для входного контроля
2	Раздел 2. Древесина и пластмассы как конструкционные строительные материалы Раздел 3. Основные положения расчета деревянных элементов конструкций из дерева и пластмасс цельного сечения Раздел 4. Соединения элементов конструкций из дерева и пластмасс и их расчет Раздел 5. Сплошные плоскостные конструкции из дерева и пластмасс	ОПК-3	Подготовка презентации Оформление практических и лабораторных работ
3	Контрольная работа (для студентов заочной формы		Задание на контрольную работу

обучения) Контроль посещаемости занятий		
Промежуточная аттестация	Код контролиру емой компетенц ии (или ее части)	Наименование оценочного средства
Экзамен	ОПК-3	Вопросы к экзамену Комплект задач к экзамену

I. Вопросы для входного контроля знаний по дисциплинам: «Сопротивление материалов», «Строительные материалы» и «Архитектура зданий»

- 1. Что относится к способности материала конструкций и их элементов сопротивляться действию внешних сил, не разрушаясь?
- 2. Что относится к способности конструкции сопротивляться усилиям, стремящимся вывести ее из исходного состояния равновесия.
 - 3. Способность тел или конструкций противостоять образованию деформаций это?.
 - 4. Что называют абсолютно твердым телом в сопромате?
 - 5. Сопромат изучает?
 - 10. Какие здания относятся к сельскохозяйственным
 - 11. Какие здания относятся к промышленным
 - 12. Какие здания относятся к гражданским
 - 13. Какие материалы можно использовать в изгибаемых конструкциях
 - 14. Дайте определения: лоджия, балкон, эркер.
 - 15. Дайте определения: основание, фундамент.

Критерии оценки

Форма обучения	Заочная		
Минимум (балл)	7		
Максимум (балл)	13		

II. Темы презентаций

- 1. Общие сведения о железобетонных и каменных конструкциях.
- 2. Материалы для деревянных конструкций, классификация, свойства
- 3. Материалы для пластмассовых конструкций, классификация, свойства
- 4. Соединения деревянных конструкций
- 5. Соединения пластмассовых конструкций
- 6. Деревянные настилы
- 7. Пластмассовые настилы
- 8. Конструкции деревянных арок
- 9. Конструкции деревянных рам
- 10. Конструкции деревянных ферм
- 11. Пространственные конструкции из дерева
- 12. Специальные деревянные конструкции (мачты, башни, силосы, мосты)
- 13. Воздухоопорные пневматические конструкции
- 14. Пневмокаркасные конструкции
- 15. Тентовые конструкции
- 16. Изготовление конструкций из дерева
- 17. Изготовление конструкций из пластмасс
- 18. Эксплуатация и усиление конструкций из дерева
- 19. Конструкционные пластмассы в строительстве
- 20. Пенопласты и органическое стекло
- 21. Деревянные балки и стойки

- 22. Уникальные деревянные конструкции: прошлое, настоящее и будущее.
- 23. Ограждающие конструкции из дерева и пластмасс
- 24. Клееные деревянные конструкции
- 25. Нагельные соединения деревянных конструкций
- 26. Пространственные конструкции из дерева и пластмасс
- 27. Рамные и арочные деревянные конструкции
- 28. Виды соединений деревянных и пластмассовых конструкций
- 29. Круглые и пиленные лесоматериалы, нормативные требования, применение
- 30. Воздухо- и водонепроницаемые такни и пленки, свойства и применение в строительстве
- 31. Древесные пластики и фанера, свойства и применение в строительстве

Критерии оценки:

Форма обучения	Заочная		
	Презентация с защитой		
Минимум	6		
Максимум	13		

- •11-13 баллов оценка «отлично» за презентацию выставляется студенту, если презентация соответствует теме, раскрыта тема полностью, материал грамотно изложен, составление соответствует стандартным требованиям, защита отлична, студент полностью освоил материал работы и в ней ориентируется.
- 9-10 баллов оценка «хорошо» за презентацию выставляется студенту, если презентация соответствует теме, тема раскрыта не полностью, есть определенный ряд замечаний, грамотность изложения материала требует доработки, работа составлена с небольшими несоответствиями стандартным требованиям, студент хорошо освоил материал работы, но немного теряется при дополнительных вопросах.
- 6-8 баллов оценка «удовлетворительно» за презентацию выставляется студенту, если презентация соответствует теме, но тема раскрыта не полностью, есть много замечаний к составлению основной части, вводной и заключительной, работа изложена безграмотно, работа составлена с несоответствиями стандартным требованиям, студент на среднем уровне освоил материал работы, только базовую часть, не может дать ответы на дополнительные вопросы.
- менее 6 баллов оценка «неудовлетворительно» за презентацию выставляется студенту, если презентация не соответствует теме, есть много замечаний к составлению основной части, вводной и заключительной, работа составлена с несоответствиями стандартным требованиям, студент не освоил материал работы, не может дать ответы на вопросы основной части презентации и на дополнительные вопросы.

За учебный семестр студенты заочного отделения должны выполнить 3 презентации и выполнить контрольную работу.

При желании студента получить большее количество баллов, то он подготавливает презентации еще дополнительно по нескольким темам.

III. Лабораторные работы

Практические работы:

Расчет деревянных элементов на смятие и скалывание, решение задач.

Расчет деревянных элементов на сжатие, решение задач.

Расчет деревянных элементов на растяжение, решение задач.

Расчет деревянных элементов на изгиб и косой изгиб, решение задач.

Расчет соединений деревянных элементов на лобовых врубках, решение задач.

Расчет болтовых соединений деревянных элементов, решение задач.

Расчет деревянных балок, решение задач.

Расчет деревянных элементов на смятие и скалывание, решение задач.

Лабораторная работа №1. Определение прочностных свойств древесины при сжатии вдоль волокон.

Критерии оценки лабораторных работ

Оценка	Критерии оценивания	
«Отлично»	Работа выполнена. Ответы на вопросы раскрыты полностью,	
4 балла	ответы правильные и обоснованные, грамотный и	
	развернутый вывод, работа сдана своевременно. Четко даны	
	ответы при защите работы.	
«Хорошо»	Работа выполнена. Ответы на вопросы даны полностью, но	
3 балла	нет достаточного обоснования или при верном ответе	
	допущена незначительная ошибка, не влияющая на	
	правильную последовательность рассуждений ответа,	
	присутствуют неточности, вывод не развернутый, работа	
	сдана с задержкой. Защита работы проведена с	
	неточностями, не было уверенности в ответах.	
«Удовлетворительно»	Работа выполнена не полностью. Ответы даны частично, нет	
2 балла	четкости и правильности в последовательности рассуждений	
	ответов, присутствуют большие неточности, отсутствие	
	выводов работы, работа сдана несвоевременно. Работа не	
	защищена студентом.	
«Неудовл.»	Работа неверна или отсутствует.	
Менее 1 балла		

Критерии оценки

Форма обучения	Заочная		
Минимум (балл)	6		
Максимум (балл)	13		

Мероприятия по дополнительному модулю:

Своевременная сдача лабораторных и практических работ - минимум 2 балла максимум 5 баллов.

IV. Вопросы для подготовки к экзамену

- 1. Краткий исторический обзор развития деревянных конструкций
- 2. Достоинства и недостатки древесины как конструкционного строительного материала?
- 3. Конструкционная древесина. Круглые лесоматериалы.
- 4. Конструкционная древесина. Пиленые лесоматериалы.
- 5. Классификация древесины по породе.
- 6. Строение древесины. Качество и пороки пиломатериалов.
- 7. Прочность, твердость и жёсткость древесины.
- 8. Что такое пороки и анизотропия древесины и как они влияют на ее прочность?
- 9. Влажность древесины. Влияние влажности на плотность, прочность и жёсткость древесины.
 - 10. При каких условиях древесина гниет и каковы методы защиты ее от гниения?
 - 11. При каких условиях древесина горит и каковы методы защиты ее от горения?
- 12. Что такое строительная фанера и каковы ее строение и достоинства как конструкционного материала?
- 13. Какие конструкционные пластмассы применяются для строительных конструкций и каковы их общие достоинства и недостатки?
 - 14. Что такое стеклопластики, их строение, прочность и применение?
 - 15. Что такое пенопласты, какова их структура, плотность и применение?
 - 16. Что такое оргстекло? Его основное достоинство и применение.
 - 17. Что такое воздухонепроницаемые ткани, каково их строение и где они применяются?
 - 18. Что такое винипласт, каково его основное достоинство и где он применяется?
 - 19. Что такое древесные пластики? Их строение, свойства и применение.
- 20. В каких областях народного хозяйства наиболее рационально применение пластмассовых конструкций?

- 21. Что собой представляют пневматические конструкции?
- 22. Как работают и рассчитываются растянутые деревянные элементы и как учитываются ослабления их сечений?
- 23. Как работают и рассчитываются сжатые элементы и как учитывается их устойчивость?
- 24. Как работают и рассчитываются изгибаемые элементы и как подбираются их сечения?
- 25. Как работают и рассчитываются сжато-изгибаемые элементы и как учитываются их прогибы?
- 26. Как работают и рассчитываются растянуто-изгбаемые элементы и как влияют на их работу прогибы?
- 27. Как работают и рассчитываются сминаемые элементы? Что такое угол смятия и как он влияет на их прочность и деформативность?
- 28. Как работают и рассчитываются на скалывание изгибаемые элементы и где действуют максимальные напряжения скалывания?
 - 29. Какие предельные состояния имеются у конструкций из дерева и пластмасс?
 - 30. Что такое нормативные и расчетные нагрузки и как их определяют?
- 31. Что такое нормативное сопротивление древесины и как его определяют? Что такое коэффициент условий работы и что он учитывает?
- 32. Что такое предельное состояние конструкций? По каким группам предельных состояний в соответствии с требованиями норм рассчитываются конструкции?
 - 33. Как работают и рассчитываются на скалывание соединения?
- 34. Как определяется длительная прочность древесины? Как влияют пороки на прочность древесины?
 - 35. Какие особенности работы строительной фанеры под нагрузкой?
 - 36. Какие особенности работы конструкционных пластмасс под нагрузкой?
- 37. Какие соединения применяются в деревянных конструкциях? Какие из них являются податливыми и какие жесткими?
- 38. Соединения деревянных элементов без специальных связей. Конструктивные врубки (косой прируб, врубка в полдерева, сплачивание в четверть и в шпунт).
- 39. Соединения деревянных элементов без специальных связей. Лобовые упоры (продольные, поперечные, наклонные) и их преимущества.
 - 40. Соединения деревянных элементов на механических связях, классификация.
- 41. Соединения деревянных элементов болтами (стяжными, растянутыми и изгибаемыми).
 - 42. Гвоздевые соединения деревянных элементов.
 - 43. Соединения деревянных элементов винтами, штырями, хомутами и скобами.
 - 44. В чем состоят главные достоинства клеевых соединений деревянных элементов?
 - 45. Какие стыки применяются в клееных конструкциях и как они работают?
 - 46. Что такое вклеенные стальные стержни, как они работают и рассчитываются?
 - 47. Соединения деревянных элементов с деревянными связями.
 - 48. Соединения пластмассовых конструкций, клеевые и клееметаллические.
- 49. Соединения пластмассовых конструкций, сварные, клеесварные, клеезаклепочное, клеевинтовые.
- 50. Древесные настилы, дощатые. Виды дощатых настилов, назначение, преимущества. Расчет дощатых настилов.
- 51. Древесные настилы, клеефанерные. Виды клеефанерных настилов, назначение, преимущества. Расчет клеефанерных настилов
- 52. Пластмассовые настилы. Сплошные трёхслойные плиты, виды, строение, преимущества, область применения.
 - 53. Пластмассовые настилы. Сплошные трёхслойные плиты, работа и расчет плит.
- 54. Пластмассовые настилы. Ребристые трёхслойные плиты, виды, строение, преимущества, область применения, расчет.
- 55. Пластмассовые настилы. Прозрачные настилы, виды, строение, преимущества, область применения, расчет.
 - 56. Цельнодеревянные балки, строение, преимущества, область применения, расчет.

- 57. Дощато-гвоздевые спаренные прогоны, строение, преимущества, область применения, расчет.
- 58. Клеедеревянные балки, строение, формы сечения, преимущества, область применения, расчет.
- 59. Клееармированные, составные и дощато-гвоздевые балки, строение, формы сечения, преимущества, область применения, расчет.
- 60. Цельнодеревянные стойки, строение, формы сечения, преимущества, область применения, расчет.
 - 61. Деревянные составные стойки, строение, преимущества, область применения, расчет.
- 62. Клеедеревянные стойки, строение, формы сечения, преимущества, область применения, расчет.
- 63. Решетчатые деревянные стойки, строение, формы сечения, преимущества, область применения, расчет.
- 64. Деревянные арки, конструкции, типы аркок, генеральные размеры, область применения.
 - 65. Особенности сегментных клеедеревянных арок с затяжками и без затяжек.
 - 66. Особенности стрельчатых клеедеревянных арок.
 - 67. Особенности треугольных клеедеревянных арок.
- 68. Узловые соединения деревянных арок. Опорные узлы арок, их конструктивные особенности.
 - 69. Конструкции деревянных рам. Достоинства и область применения деревянных рам.
 - 70. Гнутоклеенная трехшарнирная и ломанноклееная деревянная рама.
- 71. Клеедеревянные трехшарнирные рамы (четырехподкосные, двухподкосные, с внутренними опорными подкосами, с наружными опорными раскосами).
- 72. Клеедеревянные двухшарнирные рамы (четырехподкосные, двухподкосные, с внутренними опорными подкосами, с наружными опорными раскосами).
 - 73. Конструкции цельнодеревянных рам.
 - 74. Статический расчет деревянных рам.
- 75. Деревянные фермы, их назначение, область применения. Классификация деревянных ферм.
 - 76. Конструкции цельнодеревянных ферм.
 - 77. Конструкции клеедеревянных ферм.
 - 78. Статический расчет деревянных ферм.
 - 79. Пространственные конструкции из дерева (своды, купола и складки).
 - 80. Специальные деревянные конструкции (мачты, оттяжки, башни).
 - 81. Специальные деревянные конструкции (мосты, силосы, леса и кружала).
 - 82. Пневматические воздухоопорные строительные конструкции.
 - 83. Пневмовантовые оболочки. Их применение.
 - 84. Пневмокаркасные строительные конструкции.
 - 85. Тентовые строительные конструкции.
 - 86. Требуемые условия при изготовлении конструкций из дерева и пластмасс
- 87. Операции и оборудование необходимые при изготовлении клеедеревянных конструкций.
 - 88. Транспортирование и монтаж деревянных конструкций.
- 89. Эффективность применения деревянных конструкций и конструкций с использованием пластмасс.
 - 90. Эксплуатация деревянных конструкций.

V. Комплект задач для экзамена Задача 1.

Определить необходимое сечение растянутого элемента и произвести проверку прочности сечения, имеющего ослабления двумя отверстиями диаметром 10 мм и загруженного центрально приложенной расчетной силой $N'=180~\mathrm{kH}$. Коэффициент надежности по назначению $\gamma=1$. Конструкция изготовлена из лиственницы 1 сорта и относится к группе Б2.

Проверить несущую способность центрально-сжатой стойки сечением bxh=200x200 мм, ослабленного 3 отверстиями диаметром 10 мм, длина элемента 3700 мм , загруженной расчетной силой N'=180 кH. Защимление концов стержня — один и второй концы стержня жестко защемлены. Коэффициент надежности по назначению $\gamma=1$. Конструкция изготовлена из пихты 1 сорта и относится к группе B1.

Задача 3.

Определить необходимое сечение растянутого элемента и произвести проверку прочности сечения, имеющего ослабления двумя отверстиями диаметром 12 мм и загруженного центрально приложенной расчетной силой $N'=75\,$ кH. Коэффициент надежности по назначению $\gamma=1$. Конструкция изготовлена из пихта 1 сорта и относится к группе Б3.

Задача 4.

Проверить несущую способность центрально-сжатой стойки сечением bxh=250x150 мм, ослабленного 3 отверстиями диаметром 10 мм, длина элемента 2700 мм , загруженной расчетной силой N' = 70 кH. Защимление концов стержня — один и второй концы стержня жестко защемлены. Коэффициент надежности по назначению γ = 1. Конструкция изготовлена из дуб 2 сорта и относится к группе Б1.

Задача 5.

Проверить несущую способность центрально-сжатой стойки сечением bxh=250x175 мм, ослабленного 3 отверстиями диаметром 8 мм, длина элемента 4000 мм, загруженной расчетной силой N' = 160 кH. Защимление концов стержня — один и второй концы стержня жестко защемлены. Коэффициент надежности по назначению $\gamma = 1$. Конструкция изготовлена из вяз 2 сорта и относится к группе B1.

Задача 6.

Подобрать размеры поперечного сечения центрально-растянутого элемента, имеющего ослабления 2 диаметром 10 мм. Загруженной расчетной силой N'=60 кH. Коэффициент надежности по назначению $\gamma=1$. Конструкция изготовлена из ели 2 сорта и относится к группе A3.

Задача 7.

Подобрать размеры поперечного сечения центрально-растянутого элемента, имеющего ослабления 2 диаметром 16 мм. Загруженной расчетной силой $N'=85\,$ кH. Коэффициент надежности по назначению $\gamma=1$. Конструкция изготовлена из кедра 1 сорта и относится к группе Б3.

Задача 8.

Подобрать размеры поперечного сечения центрально-растянутого элемента, имеющего ослабления 2 диаметром 18 мм. Загруженной расчетной силой $N'=105~\mathrm{kH}$. Коэффициент надежности по назначению $\gamma=1$. Конструкция изготовлена из сосны 2 сорта и относится к группе $\Gamma2$.

Задача 9.

Подобрать размеры поперечного сечения центрально-растянутого элемента, имеющего ослабления 3 диаметром 12 мм. Загруженной расчетной силой $N'=125~\mathrm{kH}$. Коэффициент надежности по назначению $\gamma=1$. Конструкция изготовлена из березы 1 сорта и относится к группе A1.

Задача 10.

Проверить несущую способность поперечного прямоугольного сечения центральнорастянутого элемента, размерами bxh=150x175 мм имеющего ослабления 3 диаметром 16 мм. Загруженной расчетной силой $N'=125~\mathrm{kH}$. Коэффициент надежности по назначению $\gamma=1$. Конструкция изготовлена из кедр 2 сорта и относится к группе B1.

Задача 11.

Проверить несущую способность поперечного прямоугольного сечения центральнорастянутого элемента, размерами bxh=150x125 мм имеющего ослабления 2 диаметром 18 мм. Загруженной расчетной силой N' = 110 кH. Коэффициент надежности по назначению γ = 1. Конструкция изготовлена из сосна 2 сорта и относится к группе Γ 2.

Задача 12.

Проверить несущую способность поперечного прямоугольного сечения центральнорастянутого элемента, размерами bxh=1250x225 мм имеющего ослабления 3 диаметром 12 мм. Загруженной расчетной силой N' = 130 кH. Коэффициент надежности по назначению $\gamma = 1$. Конструкция изготовлена из березы 12 сорта и относится к группе A2.

Задача 13.

Определить необходимое сечение растянутого элемента и произвести проверку прочности сечения, имеющего ослабления тремя отверстиями диаметром 8 мм и загруженного центрально приложенной расчетной силой N' = 125 кH. Коэффициент надежности по назначению $\gamma = 1$. Конструкция изготовлена из лиственницы 1 сорта и относится к группе Б2.

Задача 14.

Проверить несущую способность центрально-сжатой стойки сечением bxh=175x200 мм, ослабленного 3 отверстиями диаметром 10 мм, длина элемента 2700 мм, загруженной расчетной силой N'=160 кH. Защемление концов стержня — один и второй концы стержня шарнирно защемлены. Коэффициент надежности по назначению $\gamma=1$. Конструкция изготовлена из кедра 1 сорта и относится к группе Б3.

Залача 15.

Проверить несущую способность центрально-сжатой стойки сечением bxh=250x175 мм, ослабленного 2 отверстиями диаметром 10 мм, длина элемента 3400 мм , загруженной расчетной силой N' = 98 кH. Защемление концов стержня — один жестко зачемлен, а второй свободно стоящий. Коэффициент надежности по назначению γ = 1. Конструкция изготовлена из сосна 2 сорта и относится к группе Б1.

Задача 16.

Подобрать размеры поперечного сечения центрально-растянутого элемента, имеющего ослабления 2 диаметром 12 мм. Загруженной расчетной силой $N'=75\,$ кH. Коэффициент надежности по назначению $\gamma=1.$ Конструкция изготовлена из пихты 2 сорта и относится к группе A1.

Необходимый минимум для допуска к экзамену <u>40 баллов</u>, получения итоговой оценки: «удовлетворительно» - <u>40-69 баллов</u>, «хорошо» - <u>70-89 баллов</u>, «отлично» - <u>90-100 баллов</u>.

Критерии оценки экзамена:

Оценки **«отлично» от 25 до 30 баллов** - заслуживает студент, обнаруживший всестороннее, систематическое и глубокое знание учебного и нормативного материала, умеющий свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной кафедрой. Как правило, отличная оценка выставляется студентам, усвоившим взаимосвязь основных понятий курса, их значение для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебного материала, знающим точки зрения различных авторов и умеющим их анализировать.

Оценка **«хорошо» от 18 до 24 баллов** - выставляется студентам, обнаружившим полное знание учебного материала, успешно выполняющим предусмотренные в программе задания, усвоившим основную литературу, рекомендованную кафедрой. Этой оценки, как правило, заслуживают студенты, демонстрирующие систематический характер знаний по дисциплине и способные к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

На **«удовлетворительно» от 10 до 17 баллов** - оцениваются ответы студентов, показавших знание основного учебного материала в объеме, необходимом для дальнейшей учебы и в предстоящей работе по профессии, справляющихся с выполнением заданий, предусмотренных программой. Как правило оценка «удовлетворительно» выставляется студентам, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, не носящие принципиального характера, когда установлено, что студент обладает необходимыми знаниями для последующего устранения указанных погрешностей под руководством преподавателя.

Оценка **«неудовлетворительно» менее 10 баллов** - выставляется студентам, обнаружившим пробелы в знаниях основного учебного материала, допускающим принципиальные ошибки в выполнении предусмотренных программой заданий. Такой оценки заслуживают ответы студентов, носящие несистематизированный, отрывочный, поверхностный

характер, когда студент не понимает существа излагаемых им вопросов, что свидетельствует о том, что студент не может дальше продолжать обучение или приступать к профессиональной деятельности без дополнительных занятий по соответствующей дисциплине.

VI. Задание для контрольной работы для студентов заочного обучения

Контрольная работа (КР) - это самостоятельная работа студента, где раскрывается суть заданной студенту темы, содержание которой должно быть логичным, и решаются задачи по вариантам. Структура контрольной работы, указания по ее оформлению и задачи по вариантам представлены в кратких методических указаниях на контрольную работу по дисциплине «Конструкции из дерева и пластмасс» для студентов заочного отделения направление «Строительство»

Варианты заданий на контрольную работу представлены в таблицах 1 и 2.

Таблица 1. Варианты заданий для студентов заочной формы обучения, гр. БП20ВР66ПГ1 (43гр.)

No	ФИО студента	№ зачетной	Наименование темы для	Номера задач
варианта	тто студенти	книжки	теоретической части КР	КР
1	Азуров Даниил Васильевич	21439	Специальные деревянные конструкции (мачты, башни, силосы, мосты леса и кружала).	Задачи 1 – 7, вариант 1
2	Гудима Михаил Михайлович	21444	Соединения деревянных элементов винтами, штырями, хомутами и скобами.	Задачи 1 – 7, вариант 2
3	3 Скитский Виталий 21451 Викторович		Деревянные фермы, их назначение, область применения. Классификация деревянных ферм.	Задачи 1 – 7, вариант 3

Таблица 2. Варианты заданий для студентов заочной формы обучения, гр. БП20ВР62ПГ1 (41гр.)

Nr.	ФИО	Nr	11	11
$\mathcal{N}_{\underline{0}}$	ФИО студента	№ зачетной	Наименование темы для	Номера задач
варианта		книжки	теоретической части КР	КР
			Материалы для деревянных	Задачи 1 – 7,
1	Анастас Егор	17066	17066 конструкций, классификация,	
	Владимирович	1,000	свойства	
				D 1 7
	Барон Марк		Материалы для пластмассовых	Задачи 1 – 7,
2		21511	конструкций, классификация,	вариант 2
	Владимирович		свойства	
	Бахчеван		0	Задачи 1 – 7,
3	Андрей 21512		Ограждающие конструкции из	вариант 3
3	Николаевич	21312	дерева и пластмасс	Барнанг
	тиколиеви т		Уникальные деревянные	Задачи 1 – 7,
	Будяк Сергей	22084	_	вариант 4
4	Андреевич		конструкции: прошлое,	вариант 4
	Ap • • •		настоящее и будущее.	
_	Бытка Денис	21514	Воздухоопорные	Задачи 1 – 7,
5	Валерьевич	21514	пневматические конструкции	вариант 5
	Владюк			Задачи 1 – 7,
6	Валентин	23666	Пневмокаркасные	вариант 6
	Валентинович		конструкции	1
_	Жосан Денис		_	Задачи 1 – 7,
7	Вадимович	21517	Тентовые конструкции	вариант 7
			Duri and remaining transportation	
8	Ковтун Михаил	21425	Виды соединений деревянных	Задачи 1 – 7,
	Николаевич		и пластмассовых конструкций	вариант 8

9	Коробков Глеб Александрович	21427	Деревянные и пластмассовые настилы	Задачи 1 – 7, вариант 9
10	Кучеренко Светлана Михайловна	21428	Пространственные конструкции из дерева	Задачи 1 – 7, вариант 10
11	Михайлов Александр Михайлович	21432	Конструкции деревянных арок и рам	Задачи 1 – 7, вариант 11
12	Онищенко Сергей Иванович	23665	Специальные деревянные конструкции (мачты, башни, силосы, мосты леса и кружала).	Задачи 1 – 7, вариант 12
13	Поян Николай Михайлович	21434	Соединения деревянных элементов винтами, штырями, хомутами и скобами.	Задачи 1 – 7, вариант 13
14	Раецкий Петр Тимофеевич	22079	Деревянные фермы, их назначение, область применения. Классификация деревянных ферм.	Задачи 1 – 7, вариант 14
15	Смоляров Владислав Михайлович	21524	Решетчатые деревянные стойки, строение, формы сечения, преимущества, область применения.	Задачи 1 – 7, вариант 15
16	Шалагина Александра Александровна	21438	Эксплуатация деревянных конструкций.	Задачи 1 – 7, вариант 16
17	Ярошенко Евгений Валерьевич	21510	Конструкции деревянных рам. Достоинства и область применения деревянных рам.	Задачи 1 – 7, вариант 17

Указания к оформлению контрольной работы:

Контрольная работа (KP) - это самостоятельная работа студента, где раскрывается суть заданной студенту темы или вопроса, содержание которой должно быть логичным и решаются задачи по вариантам.

Объем контрольной работы составляет от 15 до 25 машинописных страниц (включая приложения).

КР должна быть представлена в форме рукописи, в печатном виде на листах формата A4 (210х297 мм), на одной стороне листа белой бумаги.

Каждая страница должна иметь одинаковые поля: размер левого поля – 20 мм, правого – 10 мм, верхнего и нижнего – по 20 мм, рамкой они не очерчиваются.

Набор текста должен удовлетворять следующим требованиям: шрифт Times New Roman, кегль 12, межстрочный интервал – 1,5. Заголовки – жирный шрифт.

Таблицы, рисунки, фотографии, чертежи, схемы и графики, представляются в виде приложений, которые должны быть четко оформлены, пронумерованы и иметь название. Например: ПРИЛОЖЕНИЕ 5, Рис. 3. Центрально-сжатый стержень: а) круглого сечения; б) прямоугольного сечения.

Оформление титульного листа должно соответствовать образцу (Приложение 1).

Все страницы текста, включая его иллюстрации, задачи и приложения, должны иметь сквозную нумерацию. Титульный лист входит в общую нумерацию страниц, но номер на нем не проставляется.

Номера страниц проставляются арабскими цифрами.

Номер приложения размещают в правом верхнем углу над заголовком приложения после слова, например, «Приложение 1». На все приложения в основной части работы должны быть ссылки.

Задачи в КР начинаются с новой страницы, условие задачи переписывается полностью (без сокращений), затем записывается краткое условие и решение задачи.

Решение задачи сопровождается необходимыми объяснениями, которые заключаются в следующем:

- -символическая запись основных законов, на которых основано решение задачи, должно сопровождаться их словесной формулировкой и разъяснением буквенных значений;
- -если при решении задачи применяется формула, относящаяся к частному случаю, то ее следует вывести;
 - -задачи должны иллюстрироваться чертежом (рисунком), приведенным в задании;
 - -при подсчетах должны соблюдаться правила приближенных вычислений.

Структура контрольной работы (КР):

- Титульный лист (см. приложение 1).
- Содержание
- Введение. Дается постановка вопроса, актуальность и значимость темы, дается характеристика использованной литературы.
 - Основная часть. Состоит из темы, которая может включать в себя несколько разделов.
 - Задачи. Решаются 7 задач по вариантам.
- Литература (перечень использованной литературы). При раскрытии темы используются не менее 5 различных источников, которые должны быть включены в перечень использованной литературы. Если студент использует источники интернета, необходимо дать соответствующие ссылки на них.

Приложения (схемы, таблицы, рисунки, графики, картинки, фотографии и др., что необходимо для полного и демонстрационного раскрытия темы или конкретного раздела).

При оценке Вашего труда преподавателя интересует:

- -соответствие теме;
- -глубина проработки материала;
- -правильность и полнота использования источников;
- -использование материала с источников интернета;
- -объем прилагаемого демонстрационного материала и его содержание по представленным разделам темы (приложения);
- -правильность решения задач, в их решении не содержится ошибок принципиального характера;
 - -оформление работы.

Контрольная работа засчитывается, если все перечисленные требования выполнены.

В том случае, если контрольная работа не зачтена, она возвращается студенту для переработки.

Студент обязан предоставить работу на повторное рецензирование, включив новые решения задач, в которых были обнаружены ошибки и исправив теоретический материал, раскрыв его более подробно.

Работа, выполненная студентом не в соответствии с заданием, возвращается как не зачтенная.

Перед экзаменом проводится собеседование по контрольной работе.

Критерии оценки:

«зачтено» от 10 до 30 баллов - ставится, если студент выполнил контрольную работу в полном объеме с соблюдением необходимой последовательности действий; в ответе правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления; правильно выполняет анализ ошибок.

«не зачтено» до 10 баллов - ставится, если студент выполнил работу не полностью или объем выполненной части работы не позволяет сделать правильных выводов.

Своевременная сдача контрольной работы - минимум 2 балла максимум 5 баллов.

VII. Учебно-методическое и информационное обеспечение дисциплины

№ п/п	Наименование учебника, учебного пособия	Автор	Год изд.	Кол-во экземп ляров	Электро нная версия	Место размещен ия эл.версии	
		Основная литера	⊥ атура			эльерени	
1	Конструкции из дерева и пластмасс	Хромц Ю.Н	2004	-	+	Каб. ЭИР	
2	Конструкции из дерева и пластмасс Учебник. М.: ACB	М.М. Гопоев, И. М. Гуськов	2004	-	+	Каб. ЭИР	
3	Сборник задач по курсу «Конструкции из дерева и пластмасс»	Вдовин В.М.	2004	-	+	Каб. ЭИР	
	Д	ополнительная ли	тератур	a			
1	Конструкции из дерева и пластмасс	Филимонов Э.В, Гопоев М.М., Ермоленко Л.К.	2010	-	+	Каб. ЭИР	
2	Конструкции из дерева и пластмасс в 2-х ч.	Стоянов В.В.	2005	-	+	Каб. ЭИР	
3	Конструкции из дерева и пластмасс: учебник для студ. учреждений высш. проф.образования	Бойтемиров Ф.А.	2013	-	+	Каб. ЭИР	
4	СНИП ПМР 54-01-02 Деревянные конструкции	ПМР	2002	0/	+	Каб. ЭИР	
1	Итого по дисциплине:						

Программное обеспечение и интернет – ресурсы:

- -Windows 10 Professional,
- -пакет прикладных программ Microsoft Office, AutoCAD, ArhiCAD.
- -иллюстративные материалы: презентации, видеоматериалы, слайды, чертежи, , схемы, тесты;
- -базы данных, информационно-справочные и поисковые системы «Стройконсультант»;
- www archi.ru
- -www.stroyinform.com
- -www.dupcpp.ru