ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «Приднестровский государственный университет им. Т.Г. Шевченко»

Рыбницкий филиал

Кафедра автоматизации технологических процессов и производств

УТВЕРЖДАЮ // Зав. кафедрой АГПиП, доцент

протокол №1 от 19 сентября 2023 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине

Б1.О.29 «Моделирование электротехнических устройств»

Направление подготовки 2.13.03.02 «Электроэнергетика и электротехника»

Профили подготовки: «Электроэнергообеспечение предприятия и электротехника»

> Квалификация выпускника Бакалавр

> > Форма обучения заочная

> > Год набора 2021

Разработал:

преподаватель

/Бондарь В.В.

Паспорт фонда оценочных средств по учебной дисциплине «Моделирование электротехнических устройств»

1. Модели контролируемых компетенций:

Компетенции, формируемые в процессе изучения дисциплины (VI семестр):

Код компетенции	Формулировка общепрофессиональной компетенции		
	Фундаментальная подготовка:		
ОПК-2	Способен применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач		
7	Георетическая и практическая профессиональная подготовка:		
ОПК-3	Способен использовать методы анализа и моделирования электрических цепей и электрических машин		

2. Программа оценивания контролируемой компетенции:

№	Контролируемые модули, разделы (темы) дисциплины	Код контролируемой компетенции (или ее части)	Наименование оценочного средства
Теку	щая аттестация		
1	Моделирование электротехнических устройств	ОПК-2, ОПК-3	дискуссия, тест, реферат, модульная контрольная работа
Пром	ежуточная аттестация		
	1	ОПК-2, ОПК-3	Вопросы к экзамену

Перечень дискуссионных тем для круглого стола (дискуссии, полемики, диспута, дебатов) по дисциплине «Моделирование электротехнических устройств» для студентов III курса, з/о направления «Электроэнергетика и электротехника» профиль подготовки «Электроэнергообеспечение предприятия и электротехника», VI семестр

- 1. Методы решения систем линейных алгебраических уравнений.
- 2. Оперативный метод решения систем дифференциальных уравнений.
- 3. Алгоритмы цифрового моделирования элементов технических систем, представленных дифференциальными и разностными уравнениями.
 - 4. Моделирование переходных и установившихся режимов.
- 5. Матєматические модели регуляторов замкнутых электромеханических систем. Мотель замкнутая электромеханической системы с П-регулятором.
- 6. Анализ динамики пуска, реверса, останова, наброса и сброса нагрузки ДПТ с применением классических способов решения задачи каши.
- 7. Анализ динамики процесса наброса и сброса нагрузки двигателя постоянного тока.

Критерии оценки:

оценка «отлично» выставляется студенту если – результат, содержащий полный правильный ответ, полностью соответствующий требованиям критерия, – максимальное количество баллов;

оценка «хорошо» результат, содержащий неполный правильный ответ (степень полноты ответа — более 60%) или ответ, содержащий незначительные неточности, т.е. ответ, имеющий незначительные отступления от требований критерия, — 75% от максимального количества баллов;

оценка «удовлетворительно» результат, содержащий неполный правильный ответ (степень полноты ответа — от 30 до 60%) или ответ, содержащий значительные неточности, т.е. ответ, имеющий значительные отступления от требований критерия — 40% от максимального количества баллов;

оценка «неудовлетворительно» результат, содержащий неполный правильный ответ (степень полноты ответа — менее 30%), неправильный ответ (ответ не по существу задания) или отсутствие ответа, т.е. ответ, не соответствующий полностью требованиям критерия, — 0% от максимального количества баллов.

Темы эссе (рефератов, докладов, сообщений)
по дисциплине «Моделирование электротехнических устройств»
для студентов III курса, з/о
направления «Электроэнергетика и электротехника»
профиль подготовки
«Электроэнергообеспечение предприятия и электротехника»,
VI семестр

- 1. Оперативный метод решения систем дифференциальных уравнений.
- 2. Алгоритмы цифрового моделирования элементов технических систем, представленных дифференциальными и разностными уравнениями.
 - 3. Моделирование переходных и установившихся режимов.
- 4. Математические модели регуляторов замкнутых электромеханических систем. Мотель замкнутая электромеханической системы с П-регулятором.
- 5. Анализ динамики пуска, реверса, останова, наброса и сброса нагрузки ДПТ с применением классических способов решения задачи каши.
- 6. Анализ динамики процесса наброса и сброса нагрузки двигателя постоянного тока.

Критерии оценки:

оценка «отлично» выставляется студенту если – результат, содержащий полный правильный ответ, полностью соответствующий требованиям критерия, – максимальное количество баллов;

оценка «хорошо» результат, содержащий неполный правильный ответ (степень полноты ответа — более 60%) или ответ, содержащий незначительные неточности, т.е. ответ, имеющий незначительные отступления от требований критерия, — 75% от максимального количества баллов;

оценка «удовлетворительно» результат, содержащий неполный правильный ответ (степень полноты ответа — от 30 до 60%) или ответ, содержащий значительные неточности, т.е. ответ, имеющий значительные отступления от требований критерия — 40% от максимального количества баллов;

оценка «неудовлетворительно» результат, содержащий неполный правильный ответ (степень полноты ответа – менее 30%), неправильный ответ (ответ не по существу

задания) или отсутствие ответа, т.е. ответ, не соответствующий полностью требованиям критерия, -0% от максимального количества баллов.

Тестовые задания для проведения текущего контроля по дисциплине «Моделирование электротехнических устройств» для студентов III курса, з/о направления «Электроэнергетика и электротехника» профиль подготовки «Электроэнергообеспечение предприятия и электротехника», VI семестр

Вариант № 1.

- 1. Фильтр низких частот.
- 2. Математическая модель П-регулятора.
- 3. Модель двигатель постоянного тока независимого возбуждения.
- 4. Что означает данная формула:

$$N(x) = y_n + q\Delta y_{n-1} + \frac{q(q+1)}{2!}\Delta^2 y_{n-2} + \frac{q(q+1)(q+2)}{3!}\Delta^3 y_{n-3}$$

- а) интерполяционный многочлен Ньютона для интерполирования вперед;
- b) интерполяционный многочлен Ньютона для интерполирования назад;
- с) интерполяционный полином Лагранжа.
- 5. Напишите формулу дисперсии.
- 6. Суть проблемы приближенного дифференцирования.

7. Что означает данная формула:
$$\int_{a}^{b} f(x)dx \approx Q = \frac{h}{3}(y_0 + y_n + 4\sum_{k=0}^{(n-2)/2} y_{2k+1} + 2\sum_{k=1}^{(n-2)/2} y_{2k})$$

- а) итоговую формулу трапеций для вычисления определенных интегралов;
- b) итоговую формулу Симпсона (парабол) для вычисления определенных интегралов;
- с) итоговую формулу прямоугольников для вычисления определенных интегралов.
- 8. Вычислить норму вектора: $||a||_1$, a=(-3, 0, 4, -5)
- 9. Дана система уравнений:

$$\begin{cases} 5x_1 + 2x_2 + x_3 = 14 \\ x_1 - x_2 + 5x_3 = -4.1 \\ 2x_1 - 20x_2 - x_3 = -24.2 \end{cases}$$

Привести систему уравнений к виду, удобному для итераций по методу Зейделя. Проверить условие сходимости.

- 10. Положительные корни функции $x^3 x + 1 = 0$ будут находится на интервале:
 - a) [-3, -2];
 - b) [-2,-1];
 - c) [-1, 0].
- 11. Построить интерполяционный многочлен в форме Лагранжа для функции y = f(x), заданной таблицей значений.

x	-1	0	1
y	3	2	5

12. Используя метод наименьших квадратов, выведите эмпирическую формулу для функции y = f(x), заданной в табличном виде:

x	-1	-0,8	-0,6	-0,4	-0,2	0
у	2	0,81	-0,07	-0,774	-1,398	-2

13. Используя методы численного дифференцирования и приближенные методы решения уравнений найти значение производной в указанной точке x_* :

$$y = (1 - x^2)(1 - x^3)$$
 $x_* = 0.5$

14. Вычислить приближенно с шагом h=1 интеграл $\int_{-1}^{3} \frac{dx}{2+x}$ по формуле: правых прямоугольников.

Вариант № 2.

- 1. Широтно-импульсный преобразователь.
- 2. Математические модели регуляторов замкнутых электромеханических систем
- 3. Фильтр высоких частот.
- 4. Математическая модель ПИ-регулятора.
- 5. Модели замкнутых электромеханических систем.
- 6. Модель замкнутой электромеханической системы с П-регулятором, двигателем постоянного тока и силовым преобразователем.
- 7. Что означает данная формула: $\int_{a}^{b} f(x)dx \approx Q = \frac{h}{2}(y_0 + y_n + 2\sum_{k=1}^{n-1} y_k)$
 - а) итоговую формулу трапеций для вычисления определенных интегралов;
 - b) итоговую формулу Симпсона (парабол) для вычисления определенных интегралов;
 - с) итоговую формулу прямоугольников для вычисления определенных интегралов.
- 8. Решить системы уравнений методом Гаусса.

$$\begin{cases} 2x + 3y + z = 2, \\ 3x + y + 2z = 7, \\ x + 2y + 3z = 3. \end{cases}$$

9. Решается система уравнений

$$\begin{cases} 2x_1 + x_2 = 0 \\ x_1 + 2x_2 = -3 \end{cases}$$

по методу Зейделя с начальным приближением $\begin{pmatrix} 0 \\ -3 \end{pmatrix}$. Каковая относительная

погрешность решения после двух шагов метода Зейделя?

- 10. Положительные корни функции x^3 $3x^2$ + 1=0 будут находится на интервале:
 - a) [-1, 0,5];
 - b) [-0,5,1];
 - c) [-1, 1].
- 11. Построить интерполяционный многочлен в форме Лагранжа для функции y = f(x), заданной таблицей значений.

X	0,5	0,8	1
y	-0,500	1,240	3

12. Используя метод наименьших квадратов, выведите эмпирическую формулу для функции y = f(x), заданной в табличном виде:

Х	1	1,2	1,5	1,8	2	1
y	-4	-3,400	-1,750	0,800	3	-4

13. Используя методы численного дифференцирования и приближенные методы решения уравнений найти значение производной в указанной точке x_* :

$$v = (x^2 + 1)/x$$
 $x_* = 1.725$

14. Оценить теоретически значение шага интегрирования h для приближенного вычисления интеграла $\int_0^1 \frac{dx}{1+x}$ по формуле трапеций с точностью $\varepsilon = 10^{-3}$.

Критерии оценки:

- оценка «отлично» выставляется студенту, если выполнено 85-100%
- оценка «хорошо» если выполнено 75-80%
- оценка «удовлетворительно» если выполнено 60-75%
- оценка «неудовлетворительно» меньше 60%

Задание к модульной контрольной работе по дисциплине «Моделирование электротехнических устройств» для студентов III курса, з/о направления «Электроэнергетика и электротехника» профиль подготовки «Электроэнергообеспечение предприятия и электротехника», VI семестр

Номер задания соответствует номеру студента в списке журнала академической группы

Задание I. Описать теоретический вопрос по теме:

- 1. Классификация электромеханических систем.
- 2. Алгоритм классического метода решения систем дифференциальных уравнений.
- 3. Операторный метод решения систем дифференциальных уравнений
- 4. Моделирование переходных и установившихся режимов.
- 5. Алгоритмы цифрового моделирования элементов технических систем, представленных дифференциальными и разностными уравнениями.
- 6. Подготовка исходного математического описания и структурных схем к решению задач моделирования в программном пакете Scilab.
- 7. Взаимосвязь моделей элементов технических систем, представленных во временном, операторном пространствах и частотной области.
 - 8. Методы решения систем линейных алгебраических.
 - 9. Фильтр низких частот.
 - 10. Фильтр высоких частот.

- 11. Модель двигатель постоянного тока независимого возбуждения.
- 12. Широтно-импульсный преобразователь.
- 13. Математические модели регуляторов замкнутых электромеханических систем
- 14. Математическая модель П-регулятора.
- 15. Математическая модель ПИ-регулятора.
- 16. Модели замкнутых электромеханических систем.
- 17. Модель замкнутой электромеханической системы с П-регулятором, двигателем постоянного тока и силовым преобразователем.
- 18. Анализ динамики пуска, реверса, останова, наброса и сброса нагрузки ДПТ с применением классических способов решения задачи Коши
 - 19. Моделирование пуска двигателя постоянного тока.
 - 20. Моделирование остановки, реверса двигателя постоянного тока.
 - 21. Моделирование реверса двигателя постоянного тока.
- 22. Анализ динамики процесса наброса и сброса нагрузки двигателя постоянного тока.

Задание II. Решить систему линейных алгебраических уравнений методом Крамера и методом Гаусса:

1.
$$\begin{cases} 5x_1 + x_2 - x_3 = -5 \\ -x_1 + 3x_2 + x_3 = 5 \\ x - 2x_2 + 4x_3 = 1 \end{cases}$$
 2.
$$\begin{cases} 3x_1 + x_2 - x_3 = -1 \\ -2x_1 + 4x_2 + x_3 = 5 \\ x_1 + x_2 + 3x_3 = -3 \end{cases}$$

3.
$$\begin{cases} 3x_1 + x_2 - x_3 = 6 \\ 2x_1 + 4x_2 + x_3 = 9 \\ x_1 - x_2 + 3x_3 = 4 \end{cases}$$
 4.
$$\begin{cases} 3x_1 - x_2 + x_3 = 0 \\ 3x_1 + 5x_2 + x_3 = 12 \\ -x_1 + 2x_2 + 4x_3 = -1 \end{cases}$$

5.
$$\begin{cases} -4x_1 + 2x_2 + x_3 = -5 \\ -x_1 + 5x_2 + x_3 = -5 \\ 2x_1 + 3x_3 = 5 \end{cases}$$
 6.
$$\begin{cases} 5x_1 - x_2 + x_3 = -3 \\ -x_1 + 3x_2 + x_3 = -1 \\ 2x_1 + x_2 + 4x_3 = 1 \end{cases}$$

7.
$$\begin{cases} 4x_1 + 2x_2 + x_3 = 3 \\ 3x_1 + 5x_2 - x_3 = 4 \\ 2x_1 + x_2 - 4x_3 = 6 \end{cases}$$
 8.
$$\begin{cases} 5x_1 + x_2 - x_3 = 8 \\ -x_1 + 3x_2 + x_3 = 0 \\ -x_1 + 2x_3 = -5 \end{cases}$$

9.
$$\begin{cases} 5x_1 + x_2 - x_3 = -5 \\ -x_1 + 3x_2 + x_3 = 5 \\ x_1 - 2x_2 + 4x_3 = 1 \end{cases}$$
 10.
$$\begin{cases} 3x_1 + x_2 - x_3 = -1 \\ -2x_1 + 4x_2 + x_3 = 5 \\ x_1 + x_2 + 3x_3 = -3 \end{cases}$$

11.
$$\begin{cases} 3x_1 + x_2 - x_3 = 6 \\ 2x_1 + 4x_2 + x_3 = 9 \\ x_1 - x_2 + 3x_3 = 4 \end{cases}$$
 12.
$$\begin{cases} 3x_1 - x_2 + x_3 = 0 \\ 3x_1 + 5x_2 + x_3 = 12 \\ -x_1 + 2x_2 + 4x_3 = -1 \end{cases}$$

13.
$$\begin{cases} -4x_1 + 2x_2 + x_3 = -5 \\ -x_1 + 5x_2 + x_3 = -5 \\ 2x_1 + 3x_3 = 5 \end{cases}$$
 14.
$$\begin{cases} 5x_1 - x_2 + x_3 = -3 \\ -x_1 + 3x_2 + x_3 = -1 \\ 2x_1 + x_2 + 4x_3 = 1 \end{cases}$$

15.
$$\begin{cases} 4x_1 + 2x_2 + x_3 = 3 \\ 3x_1 + 5x_2 - x_3 = 4 \\ 2x_1 + x_2 - 4x_3 = 6 \end{cases}$$
 16.
$$\begin{cases} 5x_1 + x_2 - x_3 = 8 \\ -x_1 + 3x_2 + x_3 = 0 \\ -x_1 + 2x_3 = -5 \end{cases}$$

17.
$$\begin{cases} 5x_1 + x_2 - x_3 = -5 \\ -x_1 + 3x_2 + x_3 = 5 \\ x_1 - 2x_2 + 4x_3 = 1 \end{cases}$$
 18.
$$\begin{cases} 3x_1 + x_2 - x_3 = -1 \\ -2x_1 + 4x_2 + x_3 = 5 \\ x_1 + x_2 + 3x_3 = -3 \end{cases}$$

19.
$$\begin{cases} 3x_1 + x_2 - x_3 = 6 \\ 2x_1 + 4x_2 + x_3 = 9 \\ x_1 - x_2 + 3x_3 = 4 \end{cases}$$
 20.
$$\begin{cases} 3x_1 - x_2 + x_3 = 0 \\ 3x_1 + 5x_2 + x_3 = 12 \\ -x_1 + 2x_2 + 4x_3 = -1 \end{cases}$$

21.
$$\begin{cases} -4x_1 + 2x_2 + x_3 = -5 \\ -x_1 + 5x_2 + x_3 = -5 \\ 2x_1 + 3x_3 = 5 \end{cases}$$
 22.
$$\begin{cases} 5x_1 - x_2 + x_3 = -3 \\ -x_1 + 3x_2 + x_3 = -1 \\ 2x_1 + x_2 + 4x_3 = 1 \end{cases}$$

Задание III. Найдите вещественные корни уравнения.

Определите количество итераций методом дихотомии и методом Ньютона, требуемых для достижения точности 10^{-3} . Предварительно необходимо построить график функции и определить интервалы [a,b], где расположены вещественные корни уравнений.

1.
$$x^2 - \ln(1+x) - 3 = 0$$
 2. $3 \ln^2 x + 6 \ln x - 5 = 0$

3.
$$e^x + \sqrt{1 + e^{2x}} - 2 = 0$$
 4. $2x \sin x - \cos x = 0$

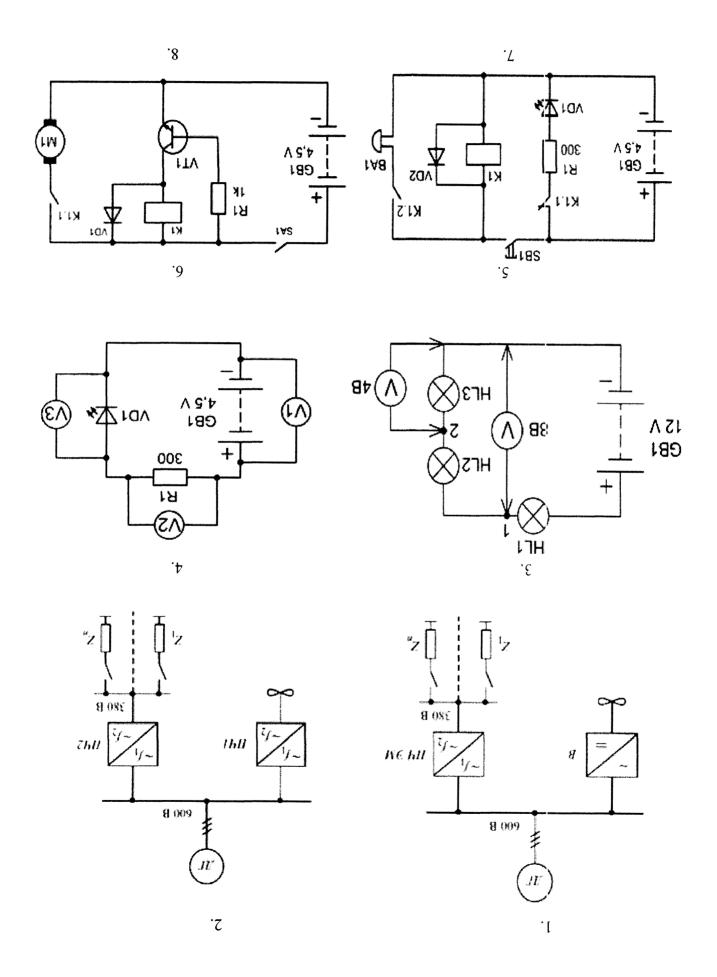
5.
$$\sin x^2 + \cos x^2 - 10x = 0$$
 6. $x + \cos(x^{0.52} + 2) = 0$

7.
$$\sqrt{1-x} - tgx = 0$$
 8. $3x - 14 + e^x - e^{-x} = 0$

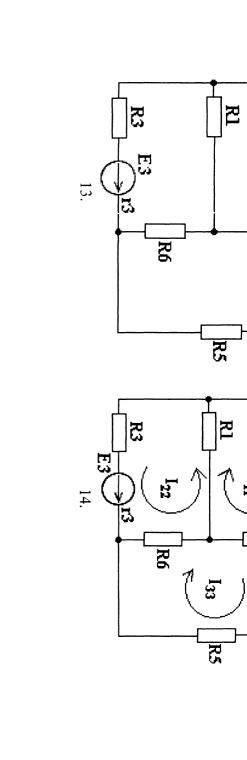
9.
$$1-x+\sin x-\ln(1+x)=0$$
 10. $\cos x-e^{-x^2/2}+x-1=0$

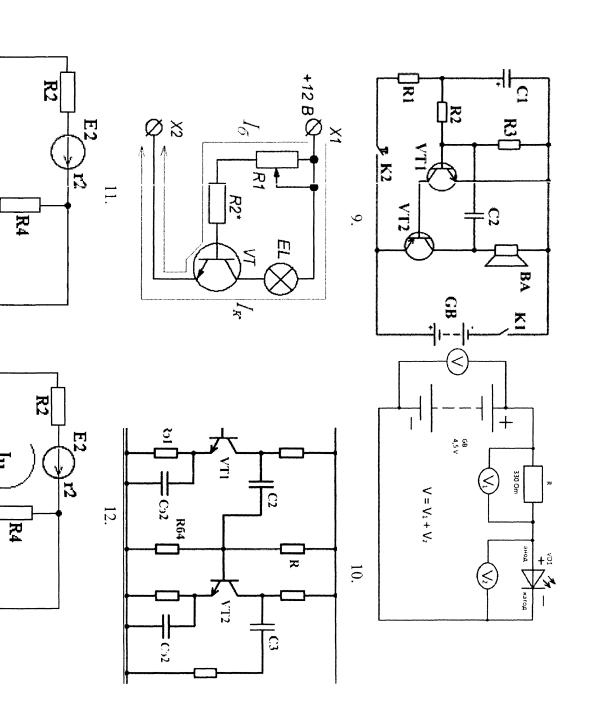
11.
$$e^x + \ln x - 10x = 0$$
 12. $x - 2 + \sin(x^{-1}) = 0$

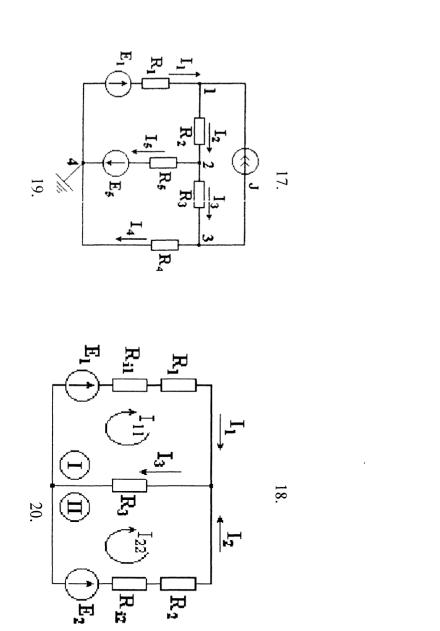
13.
$$\sin(\ln x) - \cos(\ln x) + 2\ln x = 0$$
 14. $-2 + e^x - e^{-x} = 0$

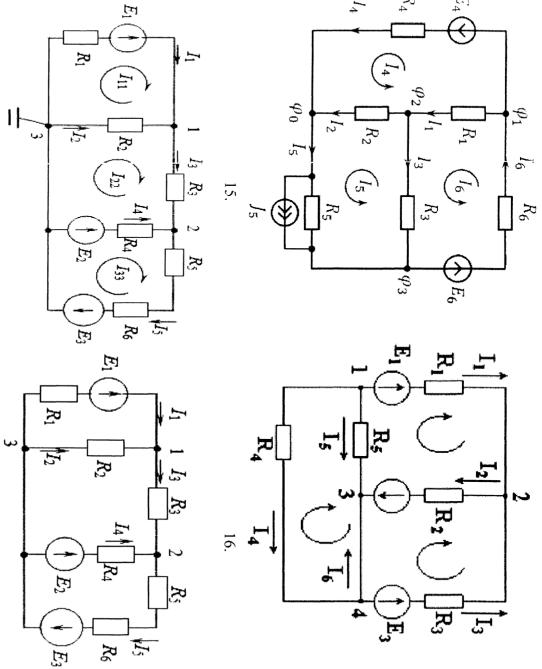

15.
$$\sqrt{1-0.4x^2} - \arcsin x = 0$$

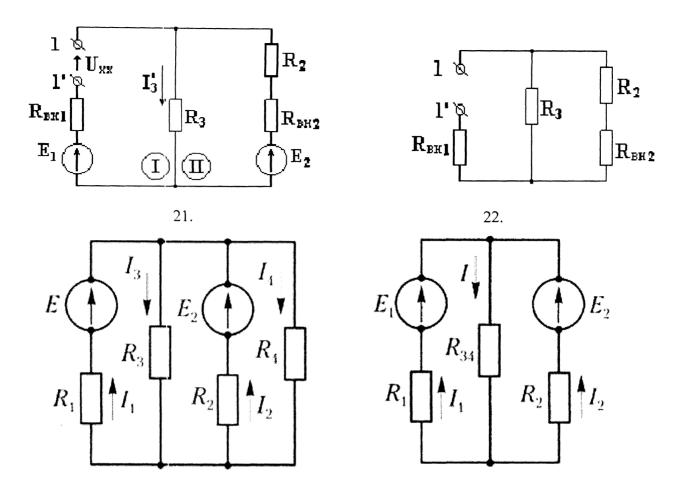
16. $\cos(2/x) - 2\sin(1/x) + 1/x = 0$
17. $3x - 4\ln x - 5 = 0$
18. $\arccos x - \sqrt{1-0.3x^3} = 0$
19. $x + \sqrt{x} + \sqrt[3]{x} - 2.5 = 0$
20. $0.4 + \arctan \sqrt{x} - x = 0$


17 2...
$$11...$$
 5 0


17.
$$3x - 4 \ln x - 3 = 0$$
 18. $\arccos x - \sqrt{1 - 0.3x} = 0$


21.
$$x^5 - 5x + 3 = 0$$
 22. $x^3 - x - 0.3 = 0$


Создайте электротехническую систему в векторном графическом редакторе Microsoft Visio.



Вопросы к экзамену по дисциплине «Моделирование электротехнических устройств» для студентов III курса, з/о направления «Электроэнергетика и электротехника» профиль подготовки «Электроэнергообеспечение предприятия и электротехника», VI семестр

- 1. Классификация электромеханических систем.
- 2. Алгоритм классического метода решения систем дифференциальных уравнений.
- 3. Операторный метод решения систем дифференциальных уравнений
- 4. Моделирование переходных и установившихся режимов.
- 5. Алгоритмы цифрового моделирования элементов технических систем, представленных дифференциальными и разностными уравнениями.
- 6. Подготовка исходного математического описания и структурных схем к решению задач моделирования в программном пакете Scilab.
- 7. Взаимосвязь моделей элементов технических систем, представленных во временном, операторном пространствах и частотной области.
- 8. Методы решения систем линейных алгебраических.
- 9. Фильтр низких частот.
- 10. Фильтр высоких частот.
- 11. Модель двигатель постоянного тока независимого возбуждения.
- 12. Широтно-импульсный преобразователь.
- 13. Математические модели регуляторов замкнутых электромеханических систем

- 14. Математическая модель П-регулятора.
- 15. Математическая модель ПИ-регулятора.
- 16. Модели замкнутых электромеханических систем.
- 17. Модель замкнутой электромеханической системы с П-регулятором, двигателем постоянного тока и силовым преобразователем.
- 18. Анализ динамики пуска, реверса, останова, наброса и сброса нагрузки ДПТ с применением классических способов решения задачи Коши
- 19. Моделирование пуска двигателя постоянного тока.
- 20. Моделирование остановки, реверса двигателя постоянного тока.
- 21. Моделирование реверса двигателя постоянного тока.
- 22. Анализ динамики процесса наброса и сброса нагрузки двигателя постоянного тока.
- 23. Решение задачи Коши операторным методом на примере цепи RL
- 24. Решение задачи Коши операторным методом на примере цепи RC.
- 25. Решение задачи Коши на примере RLC-фильтра низких частот второго порядка с нулевыми начальными условиями.
- 26. Решение задачи Коши на примере RLC-фильтра низких частот второго порядка с ненулевыми начальными условиями.
- 27. Анализ динамики двигателя постоянного тока с применением преобразования Лапласа
- 28. Моделирование системы «Двуполярный ШИП ДПТ» с применением преобразования Лапласа.
- 29. Представление дифференциального уравнения одномерной и многомерной технической системы в виде структурной схемы.
- 30. Получение передаточной функции системы на основе уравнений в пространстве состояний.
- 31. Уравнения обобщенного электромеханического преобразователя и методы их решения.
- 32. Взаимосвязь векторно-матричного дифференциального уравнения и матричной передаточной функции, описывающих свойства технических систем.
- 33. Линейные и нелинейные модели технических систем.
- 34. Моделирование сложных переходных процессов в электромеханических преобразователях и электромеханических системах.
- 35. Математические критерии управляемости и наблюдаемости непрерывных и дискретных технических систем.