ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«Приднестровский государственный университет им. Т.Г. Шевченко»

Медицинский факультет

Кафедра «Биологии и физиологии человека»

УТВЕРЖДАЮ Декан медицинского факультета, к.м.н, доцент Р.В. Окушко "30 "" 2021 г.

РАБОЧАЯ ПРОГРАММА

на 2021/2022 учебный год

Учебной ДИСЦИПЛИНЫ

«Основы молекулярной медицины»

Направление подготовки: **3.31.05.03 Стоматология (уровень специалитета)**

квалификация (степень) выпускника

Врач-стоматолог

Форма обучения: **Очная**

Год набора 2020

Тирасполь, 2021 г.

Рабочая программа дисциплины «*Основы молекулярной медицины*» /сост. К. К. Вдовиченко/ - Тирасполь: ГОУ «ПГУ имени Т.Г. Шевченко», 2021, 12 стр.

Рабочая программа предназначена для преподавания дисциплины вариативной части профессионального цикла ($E1.B.\mathcal{A}B.01.01$) студентам очной формы обучения по направлению подготовки 3.31.05.03 «Стоматология» (уровень специалитета).

Рабочая программа составлена с учетом Федерального Государственного образовательного стандарта высшего образования по направлению подготовки 31.05.03 «Стоматология» (уровень специалитета), утвержденного приказом № 96 Министерства образования и науки Российской Федерации от 9 февраля 2016 г

Составитель:

К.б.н., доцент кафедры «Биологии и физиологии человека»

Вдовиченко К. К.

1. Цели и задачи освоения дисциплины.

Цель:

- приобретение студентами знаний и понятий современной биологии для осуществления профессиональной, психолого-педагогической, организационно-управленческой и научно-исследовательской деятельности специалиста по направлению подготовки «Стоматология»; освоение методов поиска, сбора и обработки научной и научно-практической литературы по молекулярной биологии.

В курс вводятся основные понятия, которыми оперирует современная биология, и без которых, в частности, невозможно освоение передовых методов клинической диагностики. На лекциях студенты получают знания о деталях и механизмах репарации генетической информации в клетке, о способах её организации и хранении в клеточном ядре и о структуре и функции генов и геномов, о механизмах транскрипции, трансляции, а также регуляции экспрессии генов, даются основные понятия и механизмы функционирования цитоскелета, кроме этого даются основные понятия структурной организации белковых молекула также рассматриваются основные классы белков. Решение ситуационных задач на семинарских занятиях способствует более глубокому пониманию основных молекулярно-биологических процессов.

Задачи:

- введение основных терминов и понятий, касающихся структуры и функционирования наследственного аппарата клеток, экспрессии генов;
- ознакомление с основными принципами и участниками матричных процессов: репликации, транскрипции и трансляции;
 - ознакомления с основными механизмами репарации ДНК;
- изложение современных данных о природе генетического материала, структуре генома и генов, механизме функционирования генов;
 - ознакомление с современными молекулярно-биологическими методами и подходами;
 - освещение прикладных аспектов применения молекулярно-биологических методов.

Грамотный исследователь, работающий в любой области биологии, должен понимать основные принципы экспериментальных молекулярно-биологических подходов. Прикладные аспекты молекулярной биологии остаются за рамками лекционного курса, однако на семинарских занятиях им уделяется много времени.

2. Место дисциплины в структуре ООП

Дисциплина «Основы молекулярной медицины» 3, 4 семестр, относится к вариативной части по направлению подготовки 3.31.05.03 «СТОМАТОЛОГИЯ» (уровень специалитета).

Для изучения данной учебной дисциплины необходимы следующие знания, умения и навыки, полученные на предшествующих дисциплинах:

Знания:

студент должен знать основные понятия биологии (функционирование клетки и её органоидов), неорганической и органической химии (понятие химической связи и свободной энергии), физической химии, а также цитологии.

Умения: студент должен использовать методы и теоретические основы биологии, биофизики, общей генетики для понимания логики процессов, происходящих в клетке.

Навыки: студент должен быть способен проводить аналитическую работу с библиографическими, справочными, информационными источниками, готов к логическому и аргументированному анализу.

Знания, умения студента, полученные в результате освоения дисциплины «Основы молекулярной медицины», являются необходимыми для эффективного использования и интерпретации лабораторных исследований при проведении научных работ, более глубокого понимания молекулярных основ и механизмов реализации генетической информации в рамках теоретических курсов медицинского факультета.

3. Требования к результатам освоения дисциплины:

Изучение дисциплины направлено на формирование следующих компетенций:

№	Номер,	Содержание			
п/п	индекс компетен- ции	компетенции	ЗНАТЬ	УМЕТЬ	Владеть
1	OK-1	Способность к абстракт- ному мышле- нию, анализу, синтезу	Основные по- ложения кле- точной тео- рии, струк- туру и функ- ции клеточ- ных органелл	Делать выводы о биологиче- ских функциях	На основе механизмов процесса представлять свойства системы, в которой данный процесс протекает
3	ОПК-7	готовностью к использованию основных физикохимических, математических и иных естественнонаучных понятий, и методов при решении профессиональных задач	Основные физикохимические процессы, протекающие внутри клетки	Использовать для выявления функции изучаемой системы	Полученными знаниями для использования в медицине
4	ОПК-9	способностью к оценке морфофункциональных, физиологических состояний и патологических процессов в организме человека для ре-	Детальные механизмы процессов, происходящих в клетке	Предсказывать изменение функции той или иной клеточной (или же более высокоорганизованной) системы, вызванное изменением (сбоем) работы механизма, заложенного в	Пониманием логики работы изучаемой системы

шения про-		функциониро-	
фессиональ-]	вание рассмат-	
ных задач		риваемой си-	
		стемы	

В результате освоения дисциплины студент должен:

знать:

- о методах молекулярно-генетического анализа для выработки правильного научного общебиологического мировоззрения и для корректной и правильной постановки экспериментов;
- все разделы молекулярной биологии, предусмотренные программой курса, а это означает, что студент должен иметь представление о структуре и функциях нерегулярных биополимеров, механизмах основных молекулярно-генетических процессов, об организации эукариотического генома, о мобильных генетических элементах, молекулярных механизмах канцерогенеза;
- современные представления о строении и функционировании хромосом: различные степени укладки ДНК-белковой нити, нуклеосомы и их модификации, гистоновый код;
- знать свойства генетического кода и иметь представление о возникновении жизни на Земле.

уметь:

- использовать полученные в результате освоения курса знания для определения сбоя в механизме работы того или иного клеточного процесса (системы);
- определять проверку правильности выдвинутой гипотезы (о сбое в работе клеточного процесса) и предложить варианты возвращения работы механизма в физиологическую норму.

владеть:

- базовыми технологиями получения, обработки и сортировки научной и практической информации: самостоятельной работой с учебной, справочной литературой на бумажных и электронных носителях, пользованием электронными библиотеками для поиска литературы по интересующей тематике. Использовать Интернет-ресурсы: репозитории и базы данных по свойствам биологических объектов.

4. Структура и содержание дисциплины

4.1. Распределение трудоемкости в з.е./часах по видам аудиторной и самостоятельной работы студентов по семестрам:

		Фотко					
Ce-	Трупом			В том чис.	пе		Форма
местр	Трудоем-	АУЛИТОРНЫХ				Самост.	промежу- точного
местр	кость, з.е./часы	Всего	Лекций	Лаб. раб	Практич. зан	работы	контроля
III	1/36	36	18	18			
IV	2/72	72		27		45	Зачет
Итого:	3/108	108	18	45		45	Зачет

4.2. Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

		Количество часов						
№			Ауд р	Внеа уд.				
раз- дела	Наименование разделов	Всего	Л	ПЗ	ЛР	рабо та (СР С)		
I	Генетический аппарат клетки. Цитоскелет	58	12		24	22		
II	Мир РНК и биосинтез белков. Структура и функции белковых молекул	31	4		12	15		
III	Клеточная сигнализация. Молекулярные основы канцерогенеза	19	2		9	8		
Итого	•	108	18		45	45		

4.3. Тематический план по видам учебной деятельности Лекции (Зй семестр)

$N_{\underline{0}}$	Номер	Объ	ем	Тема лекции	Учебно-
Π/Π	раздела	час	ОВ		нагляд-
	дисци-	Всего			ные посо-
	плины				бия
			1		
1	I – Гене-		2	Регуляция клеточного цикла	Презента-
	тический				ции
	аппарат				
2	клетки.		2	Рогоромия ПЦУ Рокомбунующия	Презента-
2	Цитоске-			Репарация ДНК. Рекомбинация	ции
	лет	12			ции
3			2	Уромодомира организация гонотического	Презента-
3				Хромосомная организация генетического	ции
				аппарата. Структура хроматина	ции
4			2	Транскрипция у эукариот	Презента-
					ции
				7	П
5			2	Регуляция транскрипции у эукариот. Ре-	Презента-
				гуляция экспрессии генов	ции
6	1		2	Цитоскелет.	Презента-
				THITOCKETET.	ции
					1
7					Презента-
					ции

	II – Мир РНК и био- синтез бел-		2	Основные принципы структуры РНК. Виды и функции РНК. Трансляция у эукариот		
8 ков. Структура и функции белковых молекул		ра и нкции ковых		Клеточная сигнализация. Основные сигнальные каскады. Организация белковой молекулы		
9	III — Клеточная сигнализация. Молекулярные основы канцерогенеза	2	2	Молекулярные основы канцерогенеза	Презента- ции	
Итого		18 часов				

Лабораторные работы

№ п/п	Номер раздела дисциплины	Объем часов Всего		дисци- часов Всего		Учебно- нагляд- ные по- собия
				III CEMECTP		
1			3	Регуляция клеточного цикла		
2	_		3	Репарация ДНК. Рекомбинация. Виды реком- бинации		
3	I – Генети-		3	Организация хроматина		
4	ческий ап- парат	24	3	Транскрипция у эукариот		
5	клетки. ДНК		3	Регуляция транскрипции. Регуляция экспрессии генов у эукариот		
6			3	Решение задач по разделу «Генетический аппарат клетки. ДНК»		
		•	•	IV CEMECTP		
7			3	Цитоскелет	Мульти-	
8			3	Контрольная №1	медий-	

9	II – Мир		3	РНК: виды, функции. Трансляция І. Трансляция ІІ.	ные пре- зента- ции
10	РНК и био- синтез бел- ков. Струк-	12	3	Особенности жизненного цикла некоторых вирусов	Д
11	тура и функ-		3	Контрольная №2	
12	ции белко- вых молекул		3	Структура организации белковой молекулы. Типы доменов. Принципы фолдинга. Классы белков	
13	III. Клеточ- ная сигнали- зация. Мо-		3	Сигнальные системы клетки	
14	лекулярные основы кан-		3	Молекулярные основы канцерогенеза	
15	церогенеза	9	3	Контрольная №3	
Итого				45 час	

Самостоятельная работа студента

Раздел дисци- плины	Тема реферативных сообщений	Трудо- емкость (в ча- сах)	
	Патологии, вызванные нарушением синтеза коллагено реферативных сообщений в	2	
	Протоонкогены р15, р16, р21, р27- механизм действия	2	
	Пифитрин (р53): структура, функции, механизм действия	2	
Раздел I (всего 22 ч)	Ошибки мейоза: молекулярные механизмы		
22 4)	Кроссинговер: механизм образования структур Холидея и их разрешения	2	
	Эволюция геномов		
	Ошибки сплайсинга	2	
	Сбои клеточной сигнализации: Ras-каскад в онкогенезе	2	
	Мутации в генах элементов цитоскелета и их клинические проявления	3	
	Инициация мейотической рекомбинации: как и где?	3	
	Трансляция: лекарства, действующие на синтез белка	2	
D W.(Сбои в работе рибосомы	2	
Раздел II (всего	Гомеодомены: виды, функции	2	
15 ч)	Стратегии вирусов в трансляции своих белков		
	Принципы трансляционного контроля экспрессии генов		

	Белки Argonaute: понимание работы и новые возможности	2
	Новые препараты на основе неодирующих РНК: механизмы работы	3
	Белки теплового шока	2
Раздел III	Функционирование амилоидов в качестве складов пептидных гормонов в шишковидной железе	
(всего 8 ч)	Принципы, управляющие фолдингом белковых цепей	2
	Прионы: структура, функции	2
Итого		45

5. Курсовые проекты – не предусмотрены

6. Образовательные технологии

Образовательные технологии, используемые при реализации различных видов учебной работы по дисциплине «Основы молекулярной медицины» включают использование в учебном процессе образовательных и инновационных методов обучения при проведении семинарских занятий.

Образовательные технологии обучения: педагогические, развивающие, модульные; **Инновационные методы обучения:** групповая дискуссия, моделирование ситуаций, решение ситуационных задач, просмотр видеороликов, презентаций.

Се- местр	Вид заня- тия	Используемые интерактивные образовательные технологии	Количе- ство часов			
	Лекции	Мультимедийные презентации с видеофильмами и анимационными моделями.	18			
III	П лаборатор- ные работы	Мультимедийные презентации с видеофильмами и анимационными моделями.	18			
IV	Лекции	Мультимедийные презентации с видеофильмами и анимационными моделями.				
	лаборатор- ные работы	Мультимедийные презентации с видеофильмами и анимационными моделями.	27			
Итого час	Итого часов:					

- 7. Оценочные средства для текущего контроля успеваемости по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов включены в ФОС дисциплины.
- 8. Учебно-методическое и информационное обеспечение дисциплины (модуля):

8.1. Основная литература

Наименование	Автор		

№ п/ п			Год и место издания	Использует ся при изучении разделов	Семест
1	2	3	4	5	6
1.	Molecular Biology of the Cell. Sixth Edition	Alberts B., Johnson A., Lewis J. Et al	CIIIA, Garland Science, Tay- lor & Francis Group, 2015 (электронный вариант на ка- федре)	1, 2, 3	3
2.	Молекулярная биология клетки. Руководство для врачей.	Фаллер Д. М., Шилдс Д.	Москва, Бином-пресс, 2014 (электронный вариант на кафедре)	2, 3	3
3.	Lewin's Genes	Krebs J. E., Goldstein E. S., Kikpatrick S. T	USA, Jones and Bartlett Learning, 2013 (электронный вариант на ка- федре)	1, 2	3

8.2. Дополнительная литература

№ п/ п	Наименование	Автор	Год и ме- сто изда- ния	Использу ется при изучении разделов	Семест р
1	2	3	4	5	6
1.	Molecular Biology. Fifth edition	Weaver R. T.	USA, McGraw- Hill, 2012 (электрон- ный вари- ант на ка- федре)	1,2	3

8.3. Программное обеспечение и Интернет-ресурсы

1. http://www.genenames.org/ - ресурс посвящен номенклатуре генов и их символам.

2. www.ncbi.nlm.nih.gov — национальный центр биоинформации (США). Является крупнейшим репозиторием медицинской и биологической информации, содержит библиотеку научных статей.

3.

Основы молекулярной медицины (CT) (OMM).				
Ссылки на портал университета				
Лекция 1	http://moodle.spsu.ru/course/view.php?id=2105§ion=1			
Лекция 2	http://moodle.spsu.ru/course/view.php?id=2105§ion=2			
Лекция 3	http://moodle.spsu.ru/course/view.php?id=2105§ion=3			
Лекция 4	http://moodle.spsu.ru/course/view.php?id=2105§ion=4			
Лекция 5	http://moodle.spsu.ru/course/view.php?id=2105§ion=5			
Лекция 6	http://moodle.spsu.ru/course/view.php?id=2105§ion=6			
Лекция 7	http://moodle.spsu.ru/course/view.php?id=2105§ion=7			
Лекция 8	http://moodle.spsu.ru/course/view.php?id=2105§ion=8			
Лекция 9	http://moodle.spsu.ru/course/view.php?id=2105§ion=9			

8.4 Методические указания и материалы по лабораторным и лекционным занятиям В разработке

9. Материально-техническое обеспечение дисциплины

Для освоения дисциплины необходимо иметь: мультимедийный проектор (презентации).

10. Методические рекомендации по организации изучения дисциплины Приведены в УМКД.

Рабочая программа по дисциплине «**Основы молекулярной медицины**» составлена в соответствии с требованиями Федерального Государственного образовательного стандарта ВО по направлению *подготовки 3.31.05.03 «Стоматология»* (уровень специалитета) и учебного плана.

11. Технологическая карта дисциплины

Курс II, семестр III и IV, группа АП 214

Лектор: доц. Вдовиченко К. К.

Преподаватель, ведущий лабораторные работы: доц. Вдовиченко К. К.

Кафедра Биологии и Физиологии Человека

Форма текущей аттестации	Расшифровка	Минимальное количество баллов	Максимальное количество баллов
	Текущий контроль	,	
Посещение лекционных занятий	за 1 лекцию	0	2
Устный ответ по теме занятия	опрос на 1 занятии	2	5
	Рубежный контролі	Ь	
Контрольная работа	за 1 к/р	2	5
(модуль)			
	повышающий коэффициент 2,0		

<u>Максимальное количество баллов по Основам молекулярной медицины, соответствующее аттестации</u>

12*5+9*2+3*5*2+2*5=118

- 12 количество лабораторных работ за вычетом контрольных
- 5 максимальный балл за устный ответ на занятии
- 9 количество лекций, посещение которых является обязательным условием (по 2 балла за каждую посещенную лекцию)
- 5 максимальное количество баллов за рубежный контроль
- 3 количество рубежного контроля за семестр, 2 вес контрольной работы
- 1 самостоятельная работа студента, 5 максимальная оценка за неё

Рейтинговый балл		
Допуск к промежуточному контролю 50-65% или 59-76 балла		
Зачет 77 и более баллов		

Дополнительные требования для студентов, отсутствующих на занятиях по уважительной причине: выполнение внеаудиторных контрольных и письменных работ.

Составитель: / к.б.н., доцент кафедры биологии и физиологии человека

Вдовиченко К. К.

Заведующая кафедрой биологии и физиологии человека к.б.н, доцент

И.о. зав. выпускающей кафедрой стоматологии

Ларбуз Л.И./

Декан медицинского факультета ПГУ им Т.Г. Шевченко, к.м.н, доцент

7.9. √Р.В. Окушко/