ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «ПРИДНЕСТРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. Т.Г. ШЕВЧЕНКО»

ЕСТЕСТВЕННО-ГЕОГРАФИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА ХИМИИ И МПХ

«Утверждаю» Заведующий кафедрой Химии и МПХ

доц. Гл. Серугу Щука Т.В.

Протокол №1 от 09.09.2024 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине

Б1.О.14«ОБЩАЯ И НЕОРГАНИЧЕСКАЯ ХИМИЯ»

Специальность:

33.05.01 «Фармация»

Специализация

«Фармация»

Квалификация

«Провизор»

Форма обучения:

очная

Год набора

2024

Разработчик:

к.х.н., доцент Г. Серуп Щука Т.В.

« 09 »__09__2024г.

Паспорт фонда оценочных средств по учебной дисциплине «Общая и неорганическая химия»

1. В результате изучения дисциплины "Общая и неорганическая химия" по направлению подготовки 33.05.01 — «Фармация» у обучающихся должны быть сформированы следующие компетенции:

петенции:							
Категория(группа) компетенций	Код и наименование	Код и наименование индикатора достижения универсальной компетенции					
Универсальные компетенции и индикаторы их достижения							
Системное и критическое мышление	УК-1 Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий	ИД ук-1.1 Демонстрирует знание особенностей системного и критического мышления, аргументированно формирует собственное суждение и оценку информации, принимает обоснованное решение. ИД ук-1.2 Применяет логические формы и процедуры, способен к рефлексии по поводу собственной и чужой мыслительной деятельности.					
O San arem o A co		ИД ук-1.3 Анализирует источники информации с целью выявления их противоречий и поиска достоверных суждений					
		и и индикаторы их достижения					
Профессиональная методология.	ОПК-1 Способен использовать основные биологические, физико-химические, химические, математические методы для разработки, исследований и экспертизы лекарственных средств, изготовления лекарственных препаратов	 ИД опк-1.1. - основные биологические методы анализа для разработки, исследований и экспертизы лекарственных средств и лекарственного растительного сырья. - основные методы физико-химического анализа в изготовлении лекарственных препаратов. ИД опк-1.2. - применяет основные физико-химические и химические анализа для разработки, исследований и экспертизы лекарственных лекарственного растительного сырья и биологических объектов. 					
		ИД опк-1.3 анализирует математическими методами обработки данных, полученных в ходе разработки лекарственных средств, а также исследований и экспертизы лекарственных средств, лекарственного растительного сырья и биологических объектов.					

Обязательные профессиональные компетенции						
и индикаторы их достижения						
Задача ПД	Объект или об- ласть знания	Код и наименование профессиональной компетенции	Код и наименование индикатора достижения профессиональной компетенции			
Тип	Тип задач профессиональной деятельности: экспертно-аналитический					
качества, эф- фективности и безопасности лекарственных	ные сред- ства для ме- дицинского	Способен участвовать в мониторинге качества, эффективности и безопасности лекарственных средств лекарственного расти-	ПОнимать методы фармацевтического анализа лекарственных субстанций, вспомогательных веществ и лекарственных препаратов для медицинского применения заводского производства в соответствии со стандартами качества. ИД пк-4.2. Осуществлять контроль за приготовлением реактивов и титрованных растворов стандартизировать приготовленные титрованные растворы проводить фармакогностический анализ лекарственного растительного сырья и лекарственных растительных препаратов информировать в порядке, установленном законодательством, о несоответствии лекарственного препарата для медицинского применения установленным требованиям или о несоответствии данных об эффективности и о безопасности лекарственного препарата ИД пк-4.3. Осуществлять регистрации, обработки и интерпретации результатов проведенных испытаний лекарственных средств, исходного сырья и упаковочных материалов.			

2. Программа оценивания контролируемой компетенции:

Текущая аттестация	Контролируемые модули, разделы (темы) дисциплины и их наименование	Код контролируемой компетенции (или ее части)	Наименование оценочного средства
1	Раздел 1. Общая химия.	УК-1, ОПК-1, ПК-4	собеседование, домашние контрольные работы №№1-9, аудиторные контрольные работы №1,2.
2	Раздел 2. Химия элементов.	УК-1, ОПК-1, ПК-4	собеседование, домашние контрольные работы №№10-16, аудиторная контрольная работа №3.

Промежуточная аттестация	Код контролируемой компетенции (или ее части)	
Экзамен	УК-1, ОПК-1, ПК-4	Вопросы для промежуточной атте- стации

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ПРИДНЕСТРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. Т.Г. ШЕВЧЕНКО»

ЕСТЕСТВЕННО-ГЕОГРАФИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ХИМИИ И МПХ

Вопросы для собеседования по дисциплине "Общая и неорганическая химия"

Ситуационные задачи

Основные классы неорганических соединений.

- 1. Классифицируйте приведенные оксиды: N₂O, SiO₂, Na₂O, SO₂, SO₃, CO, CO₂, CaO, Al₂O₃, MnO, MnO₂, Mn₂O₇, CrO₃, MgO.
- 2. Приведите несколько способов получения следующих оксидов: SO_2 , SO_3 , CaO, Fe_2O_3 , Al_2O_3 .
- 3. Укажите формулы ангидридов для данных кислот: H₂SO₄, H₂CrO₄, HNO₃, HMnO₄, H₃PO₄, HPO₃.
- 4. Какие из приведенных оксидов будут реагировать с водой, с соляной кислотой, с гидроксидом натрия: N_2O_5 , CaO, NO_2 , CO_2 , ZnO, CrO_3 ? Приведите уравнения реакций.
 - 5. Как с помощью индикаторов идентифицировать растворы щелочей?
- 6. С какими из перечисленных веществ будет реагировать разбавленная серная кислота: медь, цинк, оксид меди (II), гидроксид алюминия, гидроксид натрия, карбонат кальция, хлороводород?
- 7. Составьте формулы кислых и средних солей калия и следующих кислот: H_2SO_4 , H_2S , H_3PO_4 . Назовите их.
 - 8. Дайте названия основным солям: Al(OH)Cl₂, Cu₂(OH)₂CO₃, Bi(OH)₂NO₃.
- 9. Составьте формулы следующих солей: гидрокарбоната кальция, сульфата гидроксоалюминия, сульфита бария, дигидроксохлорида железа (III).
- 10. Могут ли одновременно находиться в растворе: LiOH и NaOH, NaOH и CO₂, Ca(OH)₂ и NO₂, K₂SO₄ и BaCl₂, KNO₃ и CaCl₂, KOH и Na₂HPO₄, MgOHCl и NaOH? Ответ объясните.
- 11. Составьте уравнения реакций, проходящих при постепенном добавлении избытка раствора гидроксида натрия к раствору хлорида алюминия.
- 12. Напишите ионные уравнения гидролиза следующих солей: KNO₂, LiHCO₃, Na₂HPO₄, NH₄Br, Cr₂S₃. Какие факторы будут способствовать более полному протеканию реакций?
- 13. Приведите пример взаимного усиления гидролиза двух солей, подтвердите уравнениями реакций.
 - 14. Приведите не менее трех способов получения карбоната кальция и бромида калия.

Основные законы химии. Понятие "эквивалент" в химии.

- 1. Объясните, чем масса атома отличается от относительной атомной массы.
- 2. Какая молекула имеет наибольшую массу: CO_2 , N_2O , SO_2 , H_2S ?
- 3. Определите количество вещества сульфата алюминия массой 17,1 г.
- 4. Сколько атомов фосфора содержится в молекуле Р₄ массой 248 г?
- 5. Какую массу имеют $1,55\cdot10^{23}$ молекул воды?
- 6. Какую массу имеет азот объемом 15 л при нормальных условиях?
- 7. Сколько молекул содержится в газообразном хлоре объемом 2 л при нормальных условиях (н.у.)?
- 8. Определите относительную плотность сероводорода по кислороду.
- 9. Определите фактор эквивалентности вещества, указанного в уравнениях реакций первым:
 - a) $H_3PO_4 + 2KOH \rightarrow K_2HPO_4 + 2H_2O$
 - 6) $Al_2(SO_4)_3 + 3BaCl_2 \rightarrow 3BaSO_4 + 2AlCl_3$;
 - B) $KMnO_4 + K_2SO_3 + H_2O \rightarrow MnO_2 + K_2SO_4 + KOH$.

- 10. Определите количества вещества эквивалента в данных веществах:
 - а) $9.8 \Gamma H_2SO_4$ в реакции $H_2SO_4 + KOH \rightarrow KHSO_4 + H_2O$
 - б) 28 г КОН в реакции 2КОН + $H_2S \rightarrow K_2S + 2H_2O$
 - в) $5.3 \Gamma \text{Na}_2\text{CO}_3$ в реакции $\text{Na}_2\text{CO}_3 + \text{BaCl}_2 \rightarrow \text{BaCO}_3 + 2\text{NaCl}$.

Строение вещества. Атомный уровень организации вещества.

- 1. Определите понятие «атом».
- 2. Из каких частиц состоит атомное ядро? Какой состав имеют ядра: дейтерия 2 H, трития 3 H, 7 Li, 56 Ni, 56 Fe, 118 Sn, 120 Sn?
- 3. Какими характеристиками различаются атомными орбитали 3s и 3p, 3p и 3d, 3s и 5s, 3p и 5p ? Различаются ли по энергии и форме атомные орбитали: p_x , p_y и p_z ; $d^2_x^2_y$ и d^2_z ; d_{xy} и d_{yz} ?
- 4. Приведите энергетическую диаграмму взаимного расположения в атоме энергетических уровней и подуровней для n = 1, 2, 3.
- 5. Как изменяется по мере увеличения заряда ядра относительное расположение ns- и (n-1)d- орбиталей?
- 6. Какому из приведенных ниже переходов в атоме водорода соответствует фотон с наименьшей энергией:

$$1s \rightarrow 2p, 2p \rightarrow 3s, 4p \rightarrow 5s, 1s \rightarrow 4d$$
?

- 7. Охарактеризуйте основное и возбужденное состояние атома.
- 8. Напишите электронные формулы атомов элементов первых четырех периодов, La, Ce, Lu, Hf, Th, Pa, Cm, Ir, Db.
- 9. С учетом положения элемента в периодической системе приведите схему распределения электронов на атомных орбиталях внешнего (или внешнего и предпоследнего) слоя для Cr, Mn, Fe, Pd, In, Xe, Ba.
- 10^* . Составьте электронные формулы ионов $_{22}\mathrm{Ti}^{3+}$, $_{25}\mathrm{Mn}^{2+}$, $_{29}\mathrm{Cu}^{2+}$, $_{65}\mathrm{Tb}^{4+}$, $_{78}\mathrm{Pt}^{2+}$ в основном состоянии. Определите число неспаренных электронов.
 - 11. Что понимают под релятивистским эффектом в химии?

Периодический закон и периодическая система химических элементов

- 1. В чем заключается основная причина периодического изменения свойств химических элементов?
- 2. Исходя из закономерностей заполнения электронных оболочек реальных атомов электронами, выведите периодическую систему химических элементов. Определите число элементов в каждом периоде.
- 3. По каким признакам элементы помещаются в одну группу? Приведите конкретные примеры.
 - 4. Что общего в строении атома и химических свойствах у хрома и серы; хлора и марганца?
- 5. Определите положение в периодической системе s-, p-, d- и f-элементов. В каких периодах и почему впервые появляются d- и f-элементы?
- 6. Выпишите из различных учебников формулировки периодического закона. Существует ли между ними принципиальное различие? Можете ли вы дополнить эти формулировки с учетом современных достижений науки?

Периодичность свойств атомов химических элементов

- 1. Перечислите основные параметры, характеризующие свойства атомов химических элементов.
- 2. Как вы понимаете, что такое эффективный заряд ядра? Почему при монотонном увеличении заряда ядра и общего количества электронов в атоме эффективный заряд ядра не изменяется монотонно?
- 3^* . Используя правила Слэтера, рассчитайте значение Z^* для валентных электронов каль- ция, марганца и мышьяка.
- В чем заключается различие понятий: эффективный радиус атома (или иона) и орбитальный радиус? Одинаковы ли их численные величины?
- 4. В чем заключается различие между ковалентными, металлическими и ван-дер- ваальсовыми радиусами? Совпадают ли между собой величины этих радиусов для атома одногои того же элемента? Как можно определить эффективный радиус атома?

- 5. Будут ли одинаковы ковалентные радиусы атомов: азота в молекулах N_2 и N_2H_4 ; кислорода в молекулах O_2 и H_2O_2 ; углерода в кристаллах алмаза и графита?
- 6. Насколько обоснованно с позиций современных представлений об ионных радиусах следующее соотношение (для одного и того же элемента):

$$r_{\text{катион}} << r_{\text{атом}} << r_{\text{анион}}$$
?

- 7. Чем объяснить, что орбитальные радиусы иона (0,074 нм) и атома хлора (0,073 нм) практически одинаковы, а величина эффективного радиуса его иона (0,181 нм) намного больше орбитального?
- 8. Как согласовать различие в длине двойных и тройных связей между одинаковыми атомами с тем фактом, что каждый элемент характеризуется определенным табличным значением атомного радиуса?
 - 9. Ионы Li⁺ и H⁻ имеют одинаковое число электронов. Радиус какого иона больше?
- 10. Какое влияние на величину атомного радиуса оказывают: эффективный заряд ядра, электронная конфигурация внешнего слоя атома, число электронных слоев?
- 11. Как изменяются радиусы атомов элементов по периоду и группе? Монотонно ли это изменение? В чем особенность изменения радиусов атомов d-и f-элементов в группах по сравнению с s- и p-элементами?
- 12. Чем объясняется относительно большая разница в радиусах атомов лантана и гафния, находящихся в одном периоде в соседних группах?
- 13. Что такое энергия ионизации? Потенциал ионизации? В каких единицах они измеряются? Какие факторы определяют величину ионизационного потенциала атома?
- 14. Как изменяются энергии ионизации атомов элементов главных и побочных подгрупп; элементов одного периода? Чем обусловлена немонотонность изменения величин энергий ионизации атомов по периоду (рассмотрите на примере 2*p*-элементов)?
- 15. Какой из атомов с приведенными ниже электронными конфигурациями имеет наименьшую энергию ионизации: $1s^2$, $1s^22s^2p^2$, $1s^22s^2p^5$, $1s^22s^2p^6$, $1s^22s^2p^6$ 3 s^1 ; наибольшую вторую энергию ионизации: $1s^22s^2p^6$, $1s^2p^63s^1$, $1s^22s^2p^63s^2$, $1s^2p^63s^2p^1$?
- 16. Атомы цезия (№ 55) и золота (№ 79) на внешнем электронном уровне имеют один электрон. Первая энергия ионизации цезия 3,89 эВ, а золота намного больше 9,22 эВ. В чем заключается причина этого различия?

Современные теории химической связи..

- 1. Что такое химическая связь? Какова ее природа?
- 2. Что такое молекула? Какие молекулярные частицы вы знаете?
- 3. Сформулируйте основные положения метода валентных связей (BC), используя в качестве примера схему образования химической связи в молекуле H₂. Какие допущения использует данный метод?
- 4. Какие характеристики химической связи можно измерить экспериментально? Рассчитать?
- 5. Постройте энергетическую диаграмму образования молекулы H_2 из атомов и дайте определение понятий энергия и длина химической связи. Перечислите взаимодействия между образующими молекулу частицами, которые должны быть учтены при расчете энергии связи. Какая зависимость наблюдается между энергией и длиной химической связи? В каких единицах они измеряются?
- 6. Рассмотрите схему образования связей по донорно-акцепторному механизму на конкретных примерах. Как и почему меняется устойчивость катионов в ряду $NH_4^+ H_3O^+ H_2F^+$? Образуются ли подобные ионы с фосфором, серой и хлором?
- 7. Проанализируйте возможность оценки валентности по следующим характеристикам: 1) числу электронов, используемых атомом для образования общих электронных пар; 2) числу атомных орбиталей, участвующих в образовании связи; 3) числу реально образуемых связей. Сопоставьте значения валентности азота, оцененные при использовании различных определений ее, на примере молекул и ионов NH_3 , NH_4^+ , N_2H_4 , N H $^+_2N_5H$ $^+_2H_8NO_3$, NO_2 , NO_3^- . Всегда ли совпадают валентность и число химических связей атома элемента в соединении?
- 8. Какие электроны атомов, согласно спиновой теории валентности, определяют валентность элемента?

- 9. Почему объяснение возможной валентности элемента путем сопоставления энергии возбуждения при переходе атома в валентное состояние и энергии возникающих химических связей не может считаться вполне обоснованным?
- 10. Можно ли предсказать валентность для элементов второго и третьего периодов? Воз- можен ли такой подход к определению валентности *d* и *f*-элементов? Является ли валентность характеристикой атома в индивидуальном состоянии или в составе соединения?
- 11. Как меняется валентность химических элементов при повышении температуры? Сравните устойчивость при разных температурах BeCl₂ и BeCl; AlCl₃ и AlCl; NH₃ и NH₂; CH₄ и CH₃(CH₂, CH). Что происходит с радикалами при понижении температуры?
- 12. Чем определяется координационная ненасыщенность атома в соединении? Всегда ли валентно насыщенный атом в соединении является и координационно насыщенным?
- 13. В чем заключается различие следующих характеристик атома элемента: валентности, степени окисления, координационного числа? Сравните их значения для атомов натрия и хлора в соединении NaCl.
 - 14. Определите степень окисления атомов кислорода в O_2 , O_3 , H_2O_2 , Na_2O_2 , KO_2 , KO_3 .
- 15. Как классифицируются валентные связи в зависимости от природы взаимодействующих атомов (типы химических связей) и от способа перекрывания атомных орбиталей (виды и разновидности химических связей). Какие из типов химических связей можно классифицировать на виды и разновидности (σ- и π-связи)?

Метод валентных связей

- 1. В соответствии с методом ВС сера, например, может иметь валентности 2, 4 и 6. Со фтором она образует все соединения, в которых проявляет указанные валентности, а с водородом только H₂S. С чем это связано?
- 2. Приведите примеры молекул и ионов, в которых химическая связь делокализована (носит многоцентровый характер).
- 3. Рассмотрите особенности связи в электронодефицитных структурах на примере молекулы диборана.
- 4. С помощью каких известных вам моделей можно описать пространственную конфигурацию молекул? Что должны учитывать данные модели?
- 5. В чем сущность концепции гибридизации атомных орбиталей? Каковы формы и взаимная ориентация гибридных орбиталей при sp-, sp^3 -, sp^3 -, sp^3d и sp^3d^2 -гибридизации? Какие разновидности химических связей могут образовывать гибридные орбитали?
- 6. Учитывая ориентацию гибридных орбиталей центрального атома, оцените форму молекул H_2O , CO_2 , NO_2 , NH_3 , BH_3 , CCl_4 , $SiCl_4$. Как объяснить, что молекулы с одинаковым числом атомов могут различаться по форме?
- 7. Как и почему изменяется форма частиц при переходе от BF_3 к BF_4^- ; от NH_3 к NH_4^+ ; от H_2O к H_3O^+ ?

Комплексные соединения.

- 1. Приведите примеры «сложных» соединений, полученных в течении XVI-XIX вв. и не подчинявшихся существовавшим представлениям о валентности химических элементов.
- 2. Сформулируйте основные положения координационной теории А. Вернера.
- 3. Какую особенность комплексных соединений отмечали выдающиеся химики Д.И. Менделеев, Л.А. Чугаев, И.И. Черняев, А.А. Гринберг?
- 4. В чем заключается «интегральная роль» координационной химии?
- 5. Какие из химических соединений 4KCN·Fe(CN)₂, K_2 SO₃, SO_2 Cl₂, KCl·PtCl₂·C₂H₂, SO_2 ·10H₂O, NaCl_{тв.} являются комплексными? Ответ обоснуйте.
- 6. Определите понятия: координационное число и дентатность лиганда.
- 7. Какие комплексные соединения называют:
- а) внутрикомплексными, б) хелатными, в) комплексонатами, г) ионофорами, д) биокластерами.
- 8. Определите координационное число комплексообразователя, дентатность лигандов и заряд внутренней сферы комплексов:

дихлоробис(оксалато)ирридат(III) ион, дигидроксодихлороэтилендиаминплатина, дироданобисэтилендиаминхрома(III).

- 9. Напишите формулы комплексных соединений, состав которых определяется следующими эмпирическими форулами: a) $CoCl_3$ ·3NH₃, б) $PtCl_2$ ·3NH₃, в) $Cr(NO_3)_3$ ·6NH₃, г) AuCl·KCl, д) $Rh(NO_2)_3$ ·3KNO₂.
- 10. Напишите формулы всех возможных комплексов платины(II) с внутренней сферой на основе аммиачных и бромидных лигандов.
- 11. Напишите формулы всех возможных комплексов кобальта(III) с внутренней сферой на основе этилендиамина и иодид ионов.
- 12. Приведите русскоязычное и англоязычное название комплексов:
 - a) K₂[Hg(SCN)₄], б) [Cr(H₂O)₄Cl₂]NO₃, в) Na₂[PtCl₃NO₂],
 - Γ) [PtEn₂ClBr](NO₃)₂, д) [Pd(PPh₃)₂Br₂].
- 13. Напишите формулы следующих комплексов:
 - а) дибромодиамминпалладий,
 - б) нитрат дихлоротетраамминплатины(IV),
 - в) тетракис(тиоцианато)кобальтат(II) натрия,
 - г) дихлоробис(диметилсульфоксид)палладий,
 - д) тетрахлороаурат(III) натрия.
- 14. Состав комплекса кобальта(III) с координационным числом шесть описывается эмпирической формулой CoCl₃·NaCl·xH₂O. Определите величину «х» и назовите соединение.

Молекулярные растворы.

- 1. Какие свойства растворов обусловливают их сходство как с химическими соединениями, так и со смесями.
 - 2. Как изменяется объем системы при образовании растворов:
 - а) жидких, б) газообразных, в) твердых?
- 3. Почему эндотермические процессы растворения могут самопроизвольно протекать в стандартных условиях, в то время как эндотермические химические реакции, как правило, термодинамически возможны при повышенных температурах?
- 4. Можно ли предсказать сравнительную растворимость в воде и бензоле HI, CCl₄ и I₂; сравнительную растворимость в воде MgSO₄ и BaSO₄?
- 5. Почему воду называют универсальным растворителем? Какие взаимодействия возможны между водой и растворенным веществом? Какие типы соединений возможны в растворах? Рассмотрите на примере конкретных систем: H_2O -NaCl, H_2O -CH₃COOH, H_2O -CO₂, H_2O -AlCl₃, H_2O -caxap.

Электролитическая диссоциация. Равновесия в растворах электро-литов.

- 1. Являются ли электролитами в водном растворе следующие вещества: $CaCl_2$, NH_3 , NH_4Cl , CH_4 , H_2S , HI, CH_3COOH , $BaSO_4$, $K_4[Fe(CN)_6]$, $[Cu(NH_3)_4](NO_3)_2$, $[Pt(NH_3)_2Cl_2]$?
 - 2. В чем заключается сущность теории электролитической диссоциации С. Аррениуса?
 - 3. Как можно представить схему механизма электролитической диссоциации?
- 4. Что называется кислотой, основанием, солью (кислой, средней, основной) с точки зрения теории электролитической диссоциации?
- 5. Какой особенностью обладают амфотерные гидроксиды? Как двояким образом можно объяснить амфотерные свойства гидроксидов?
 - 6. Как изменяются кислотно-основные свойства в рядах:

Mn(OH)₂, Mn(OH)₃, Mn(OH)₄, (H₂MnO₄), HMnO₄; B(OH)₃, Al(OH)₃, Ga(OH)₃, In(OH)₃, Tl(OH)₃.

Рассмотрите характер изменения кислотно-основных свойств гидроксидов элементов в зависимости от их положения в периодической системе.

- 7. Возможны ли в водном растворе веществ следующие значения pH: 0; 14; <0, >14? Можно ли рассчитать pH раствора 2M H_2SO_4 , 5M NaOH?
 - 8. Сформулируйте общие условия протекания реакций обмена в растворах.
- 9. Приведите примеры гидролиза солей по катиону; по аниону; по катиону и аниону. Напишите ионные уравнения гидролиза этих солей.
- 10. Рассмотрите возможный механизм гидролиза, учитывая, что в водном растворе содержатся гидратированные ионы. За счет образования и разрыва каких связей идет процесс гидро-

лиза?

- 11. Как зависит гидролизуемость ионов от их заряда, радиуса, поляризуемости и поляри- зующего действия; температуры и концентрации раствора?
- 12. Почему гидролиз солей идет преимущественно по первой стадии и во многих случаях в незначительной степени? Какие условия способствуют практически полному гидролизу солей? В каких случаях гидролиз может осложниться полимеризацией продуктов и образованием многоядерных комплексов?
- 13. Приведите примеры солей, которые практически полностью гидролизуются уже в обычных условиях. Чем это обусловлено?
- 14. Чем определяется возможность гидролиза трудно растворимых солей? Подвергаются ли гидролизу CaCO₃, PbS, FeS?
 - 15. Сформулируйте общее правило, позволяющее оценить среду водных растворов солей.
- 16. Какова реакция среды водных растворов NaCl, Na₂CO₃, NaHCO₃, NaHSO₄, Na₂SO₄, NH₄CH₃COO, (NH₄)₂S?
- 17. Как объяснить, что в растворе Na_3PO_4 среда щелочная, Na_2HPO_4 слабо щелочная, а в растворе NaH_2PO_4 слабо кислая?
- 18. В растворах какой соли в каждой из пар при одинаковой их концентрации (моль/л) величина рН ниже:

 $\begin{array}{ll} CrCl_2-CrCl_3; & BeSO_4-MgSO_4; \\ CrCl_3-NaCrO_2; & BeSO_4-Na_2BeO_2; \\ NaCrO_2-Na_2CrO_4; & NaSbO_2-NaSbO_3. \end{array}$

- 19. Приведите примеры солей, способных в растворе к взаимному усилению гидролиза. Объясните, почему при смешивании растворов $AlCl_3$ и K_2S и растворов $Al_2(SO_4)_3$ и Na_2CO_3 в обоих случаях образуется одно и то же трудно растворимое вещество?
- 20. Влияют ли порядок сливания и температура растворов при получении легко гидроли- зующихся солей на их состав? Почему при осаждении карбонатов тяжелых металлов чаще ис- пользуются растворы гидрокарбонатов, а не карбонатов натрия и калия? Существует ли опас- ность образования кислых солей и загрязнения ими осадков?

Окислительно-восстановительные реакции.

- 1. Чем отличается окислительно-восстановительная система от окислителя или восстановителя? Может ли одно и то же вещество образовывать несколько окислительно-восстановительных систем? Какие существуют способы изображения окислительно- восстановительных систем?
- 2. Является ли водный раствор перманганата калия термодинамически устойчивым? Почему при длительном хранении водный раствор перманганата калия обесцвечивается и в нем образуется осадок?
- 3. Оказывает ли влияние pH раствора на величину окислительно-восстановительного потенциала следующих систем:

1) $MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O;$ 2) $CrO_4^{2-} + 2H_2O + 3e^- = CrO_2^- + 4OH^-;$ 3) $Fe^{3+} + e^- = Fe^{2+}$ 4) $1/2Cl_2 + e^- = Cl^-?$

р-Элементы и их соединения. Подгруппа VIA.

- 1. Охарактеризуйте возможные валентности и степени окисления атомов p-элементов VI группы. Как изменяется устойчивость соединений элементов в высших степенях окисления по ряду сера полоний? Как проявляется вторичная периодичность в этом ряду? Все ли p- элементы VI группы относятся к халькогенам?
- 2. Объясните наблюдаемые закономерности в изменении величин энергии ионизации и сродства к электрону по ряду кислород полоний. С учетом этого оцените, какого типа связи (ионные, полярные, неполярные) наиболее характерны для атомов рассматриваемых элементов.
 - 3. Сравните по устойчивости и условиям существования ионы O^{2-} и S^{2-} , O^- и S^- .
- 4. Сравните величины энергии связей -3—3— по ряду кислород—теллур и сопоставьте p- элементы VI группы по их склонности к образованию гомоцепей -3—3—. Только ли более низ- кая энергия связи между атомами в пероксидном мостике -0—0— по сравнению с персульфид- ным

- -S-S- является причиной наличия большей реакционной способности пероксидов, чем персульфидов?
- 5. Каковы условия существования и как изменяется устойчивость двухатомных молекул 9_2 по ряду кислород—теллур?
- 6. Охарактеризуйте кратность химической связи в молекуле O_2 , используя представления теории BC.
 - 7. Как изменяются свойства простых веществ в ряду кислород-полоний?
- 8. Известно, что твердые кислород и сера имеют молекулярную кристаллическую решетку. Какую кристаллическую решетку имеет полоний?
- 9. Сравните окислительную способность (используя стандартные потенциалы) озона, атомарного и молекулярного кислорода в водных растворах. Объясните различие.
- 10. Рассмотрите, как и почему изменяются физические и химические свойства (температура кипения и плавления, агрегатное состояние, термическая устойчивость, сила кислот, окислительно-восстановительная способность), а также пространственная конфигурация молекул в ряду халькогеноводородов. Существует ли аналогия в характере изменения свойств в рядах халькогеноводородов?
- 11. Какие соединения образует кислород со щелочными металлами? Почему Na₂O₂ используется для регенерации воздуха на подводных лодках?
- 12. Пользуясь методом BC, предскажите геометрическую конфигурацию молекул Cl_2O и OF_2 . Какая из молекул OF_2 или H_2O более полярна?

р-Элементы и их соединения. Подгруппа VIIA.

- 1. Охарактеризуйте возможные валентности и степени окисления атомов p-элементов VII группы.
- 2. Как изменяются устойчивость высших степеней окисления галогенов в соединениях в ряду Cl–At? В чем заключается вторичная периодичность в изменении свойств галогенов в этом ряду?
 - 3. Почему фтор в своих соединениях не проявляет положительную степень окисления?
- 4. Проанализируйте закономерности в изменении радиусов атомов, энергии ионизации и сродства к электрону, электроотрицательности атомов по ряду фтор—астат.
- 5. Как можно объяснить наблюдаемую для галогенов закономерность в изменении энергии химической связи в молекулах 9_2 ? Как это влияет на термическую устойчивость молекул и реакционную способность простых веществ?
- 6. Как объяснить характер изменения температур плавления и кипения и изменение агрегатного состояния свободных галогенов в ряду фтор–иод?
- 7. Могут ли атомы, ионы или молекулы галогенов входить в координационную сферу комплексных соединений? Чем обусловлена полимерная структура многих хлоридов?
- 8. Рассмотрите общие принципы получения свободных галогенов. Используя значения окислительно-восстановительных потенциалов, рассмотрите возможность получения галогенов химическим путем.
- 9. Рассмотрите общие методы получения галогеноводородов. Насколько применим каждый из них для получения отдельных галогеноводородов?
- 10. Как и почему изменяются температуры плавления и кипения в ряду галогеноводородов? Сопоставьте характер этого изменения и изменения соответствующих структур в ряду свободных галогенов.
- 11. Как и почему изменяется термическая устойчивость молекул, сила кислот и восстановительная активность в ряду галогеноводородов? Чем принципиально отличается по свойствам плавиковая кислота от остальных галогеноводородных кислот?

р-Элементы и их соединения. Подгруппа VA.

- 1. Охарактеризуйте валентность и степени окисления p-элементов V группы. Как изменяется устойчивость соединений этих элементов в высшем валентном состоянии по ряду азот— висмут? Сравните наблюдаемые закономерности для p-элементов V, VI и VII групп. В чем про- является вторичная периодичность у p-элементов V группы?
 - 2. Насколько характерна для соединений p-элементов V группы склонность к образованию

донорно-акцепторной связей? Какие из таких соединений относятся к типичным лигандам? Как меняется эта тенденция по группе? Сравните устойчивость солей аммония с аналогичными солями элементов этой же группы.

- 3.Чем объясняется малая реакционная способность молекулярного азота? Как согласовать ее со способностью атомов азота образовывать прочные химические связи с атомами других элементов? Может ли молекула азота выступать в качестве лиганда?
- 4. Опишите в рамках теории ВС механизм образования химических связей в молеку- ле азота.
 - 5. Каковы условия существования двухатомных молекул ряда азот–висмут?
 - 6. Почему для азота, в отличие от фтора, мышьяка и сурьмы, не характерна аллотропия?
- 7. Какова геометрическая конфигурация молекул белого фосфора? Чем объяснить неустойчивость молекулы P_4 ?
- 8. Как и почему изменяются температуры кипения и плавления в ряду веществ азот— висмут?
- 9. Проиллюстрируйте нарастание металлического характера простых веществ в ряду фосфор—висмут на примере их взаимодействия с азотной кислотой (концентрированной и разбавленной).
- 10. Оцените термодинамическую возможность фиксации азота путем взаимодействия его с водой с образованием нитрата аммония; при взаимодействии с кислородом; водородом.
- 11. Какие водородные соединения образуют p-элементы пятой группы? Какова пространственная форма молекул этих соединений?
- 12. Объясните характер изменения физических и химических свойств однотипных водородных соединений в ряду азот–висмут (температуры плавления и кипения, термическая устойчивость молекул, окислительно-восстановительная способность). Какие из водородных соединений азота могут играть роль окислителя?

р-Элементы и их соединения. Подгруппа IIIA.

- 1. Какие валентности и степени окисления характерны в соединениях для p-элементов III группы?
- 2. Чем можно объяснить резкое изменение химических свойств при переходе от бора к алюминию?
- 3. Приведите перечень сходных для бора и кремния химических свойств. Чем обусловлено сходство химии этих элементов?
- 4. Охарактеризуйте склонность атомов p-элементов III группы к образованию ионных связей, связей Э–Э, Э–О–Э, Э–N–Э.
- 5. Каковы особенности химических связей в молекуле B_2H_6 ? Можно ли процесс димеризации молекул BH_3 объяснить образованием водородных связей; связей по донорно- акцепторному механизму?
- 6. Как объяснить, что галогениды бора не склонны подобно BH₃, к полимеризации, в то время как AlCl₃ димеризован?
- 7. Охарактеризуйте закономерность в изменении кислотно-основных свойств гидроксидов *р*-элементов III группы. В чем заключаются особенности диссоциации в водных растворах борной кислоты?
- 8. Рассмотрите особенности строения борных кислот; особенности строения гидроксида алюминия. Проанализируйте возможность применения к этим веществам следующих определений: полимерные гидроксиды, конденсированные кислоты, изополикислоты, многоядерные комплексы.
- 9. Какие из галогенидов p-элементов III группы могут гидролизоваться в соответствии с приведенными схемами:

$$9\Gamma_3 + 3H_2O = H_39O_3 + 3H\Gamma;$$

 $9\Gamma_3 + H_2O = 9O\Gamma + 2H\Gamma;$
 $49\Gamma_3 + 3H_2O = H_39O_3 + 3H[9\Gamma_4]?$

- 10. Чем можно объяснить сходство в физических свойствах C_6H_6 и $B_3N_3H_6$; BN и $C_{(графит)}$; BN и $C_{(алмаз)}$?
 - 11. Чем можно объяснить химическую инертность оксида алюминия? Каким путем этот ок-

сид можно перевести в растворимое состояние?

- 12. Охарактеризуйте особенности строения газообразного (при разных температурах) и кристаллического хлорида алюминия.
 - 13. Какие ионы могут находится в разбавленном растворе тетрабората натрия?
- 14. В чем проявляется и чем обусловлено сходство химии таллия и алюминия; таллия и щелочных металлов?

р-Элементы и их соединения. Подгруппа IVA.

- 1. Охарактеризуйте возможные валентности и степени окисления *p*-элементов IV группы в соединениях. В чем появляется вторичная периодичность в этой группе?
- 2. Какая форма катионная или анионная более характерна для p-элементов четвертой группы в их соединениях?
- 3. Как объяснить то, что углерод в природе встречается и в форме простого вещества и в форме соединений с водородом и кислородом, в то время как кремний исключительно в форме кислородных соединений?
- 4. Как объяснить, что для углерода более характерно образование связей С–С, а для кремния Si–O–Si? Сопоставьте значения энергий связей Э–Э и Э–О.
- 5. Сопоставьте склонность к образованию комплексных соединений у p-элементов четвертой группы. Рассмотрите, исходя из строения атомов, способность углерода и кремния (IV), германия и свинца (II, IV) в соединениях к проявлению донорной и акцепторной функций.
- 6. Сравните особенности структуры, физические и химические свойства аллотропных модификаций углерода. Чем объяснить наличие в случае углерода четырех аллотропных модификаций? Можно ли ожидать существования сходных модификаций у кремния и германия? Какой тип гибридизации АО приписывают атому углерода в алмазе, графите и карбине? Что пред- ставляет собой аморфный углерод?
- 7. Сравните отношение фосфора, серы, хлора и кремния к растворам щелочей. В чем за- ключается особенность растворения кремния в щелочах?
- 8. Сравните свойства водородных соединений углерода и кремния. Чем объясняется неустойчивость водородных соединений кремния? Возможно ли образование непредельных силанов?
- 9. Сравните температуры плавления и кипения, реакционную способность и окислительновосстановительные свойства водородных соединений элементов в ряду углерод—свинец.
- 10. Чем объяснить устойчивость оксида углерода (II)? Охарактеризуйте его химические свойства.
- 11. К какому классу соединений можно отнести продукты реакции взаимодействия оксида углерода (II) с металлами? Какова природа химической связи в них? Какие особенности молекул СО обусловливают их способность входить в координационную сферу?
- 12. Сравните свойства и структуру оксидов углерода (IV) и кремния (IV). Объясните, почему CO₂ газообразен и имеет низкую температуру плавления, а диоксиды остальных элементов твердые вещества с высокими температурами плавления или разложения.
- 13. Какой состав характерен для гидроксидов Э (IV)? Какие из них имеют молекулярное строение и каков состав молекул?
 - 14. Сравните кислотно-основные свойства гидроксидов Э (II) и Э (IV).
 - 15. Какие из тетрагалогенидов гидролизуются в обычных условиях по схеме:

$$\Im\Gamma_4+H_2O\rightarrow \Im O_2 H_2O + H\Gamma$$
?

Какие продукты могут образовываться при гидролизе других тетрагалогенидов?

s-Элементы и их соединения. Подгруппы IA и IIA.

- 1. Какие общие особенности можно выделить в химии *s*-элементов I и II группы?
- 2. При систематическом рассмотрении свойств *s*-элементов калий и его аналоги с большим порядковым номером, а также кальций и его аналоги выделяются в отдельные группы. Литий же и натрий, берилий и магний обычно рассматриваются отдельно от них. Чем это обусловлено?
 - 3. Химические связи каких типов характерны для *s*-элементов I и II группы?
- 4. В чем заключаются особенности металлической связи? Какие свойства металлов обусловлены таким типом связи?

- 5. Почему склонность к образованию координационных соединений более характерна для s-элементов II группы? Как изменяется эта склонность в пределах каждой группы? С какими лигандами образуются наиболее прочные комплексы?
- 6. Можно ли чисто химическим путем получить рассматриваемые металлы в свободном состоянии? Каковы условия их получения путем электролиза?
- 7. Как согласовать характер изменения величин энергии ионизации атомов щелочных металлов и величин электродных потенциалов металлов в рядах: Li–Cs; Be–Ba?
- 8. Пользуясь справочной и учебной литературой, приведите примеры, подтверждающие проявление диагональной периодичности свойств в направлении литий—магний, бериллий—алюминий.
- 9. Какие из рассматриваемых металлов могут растворяться в воде, кислотах, щелочах, в водных растворов солей?
- 10. Сравните структуру и свойства гидридов щелочных и щелочноземельных металлов и бериллия; бериллия и магния.
- 11. Какие ионы находятся в узлах кристаллической решетке оксидов: Na_2O_2 , KO_2 , BaO_2 , BaO_3 ?
- 12. Чем можно объяснить повышение устойчивости пероксидов s-элементов по группе? Как можно объяснить, что термодинамическая устойчивость оксидов s-элементов II группы увеличивается от BeO к CaO, а затем понижается?
- 13. Как согласовать усиление основных свойств (возрастает кажущаяся степень диссоциации) в ряду гидроксидов лития—цезия с тем, что все эти гидроксиды ионные соединения?
- 14. Сравните склонность соединений *s*-элементов I и II группы к образованию кристаллогидратов и двойных солей, а также их склонность к гидролизу. На примере сульфатов рассмотрите, как изменяется в пределах каждой группы термическая устойчивость и растворимость солей.

d-Элементы и их соединения. Подгруппа IB и IIB.

- 1. Можно ли на основании одинаковости электронных конфигураций внешних слоев сделать заключение о сходстве химических свойств s-элементов и d-элементов I и II групп?
- 2. Как согласовать способность d-элементов I группы проявлять степень окисления выше единицы с электронной конфигурацией этих атомов?
- 3. Чем объяснить, что для ртути в отличие от цинка и кадмия характерна переменная степень окисления?
- 4. Химическая связь какого типа наиболее характерна в соединениях для d-элементов I и II групп?
- 5. Сопоставьте склонность к комплексообразованию *d*-элементов I и II групп? Какие координационные числа характерны для них в степенях окисления +1, +2, +3? Приведите примеры комплексных соединений. Какие структуры, октаэдрические, плоские квадратные или тетраэдрические преобладают в химии золота (III)?
- 6. Как изменяется химическая активность металлов по рядам: медь-золото; цинк-ртуть? Как можно объяснить наблюдаемую закономерность?
- 7. Как согласовать положение меди в ряду напряжений и ее способность растворяться на воздухе в концентрированных HCl и CH₃COOH; взаимодействовать с газообразным HCl; растворяться в водных растворах щелочных цианидов?
- 8. Какие химические реакции лежат в основе пирометаллургических и гидрометаллургических методов получения меди; цианидного способа получения золота; методов получения цинка и ртути из их сульфидов; электрометаллургических методов получения рассматриваемыхметаллов?
- 9. Каковы условия получения, кислотно-основные, окислительно-восстановительные свойства и устойчивость оксидов d-элементов I и II групп?
- 10. Сравните устойчивость, кислотно-основные и окислительно-восстановительные свойства гидроксидов: CuOH и Cu(OH)₂; AuOH и Au(OH)₃; Zn(OH)₂ и Cd(OH)₂; Hg(OH)₂ и Hg₂(OH)₂.
- 11. В чем заключается различие в реакциях растворения $Cu(OH)_2$ и $Zn(OH)_2$ в кислотах, щелочах и водном растворе аммиака?
- 12. Сравните кислотно-основной характер следующих соединений: $Zn(OH)_2$ и $[Zn(NH_3)_4](OH)_2$; $Cu(OH)_2$ и $[Cu(NH_3)_4](OH)_2$.

13. Какие свойства соединений серебра обусловливают их применение в фотографическом процессе?

d-Элементы и их соединения. Подгруппа VIB и VIIB.

- 1. Какие степени окисления наиболее характерны для d-элементов VI; d-элементов VII групп? Возможно ли предсказание каких либо степеней окисления этих элементов исходя из особенностей электронных конфигураций их атомов?
- 2. Чем обусловлена близость атомных радиусов молибдена и вольфрама, технеция и рения и как это сказывается на изменении свойств в рядах хром-молибден; марганец-рений?
- 3. Какая форма катионная или анионная характерна для рассматриваемых элементов в низших степенях окисления; в высших степенях окисления их атомов?
- 4. Каково отношение хрома, молибдена и вольфрама к кислотам и щелочам? Какие реакции протекают при сплавлении этих металлов с окислительными щелочными смесями? Каков химизм процесса растворения вольфрама в смеси азотной и плавиковой кислот?
- 5. Объясните причину пассивирования хрома азотной кислотой, царской водкой, при анодном окислении хрома. Почему хром не пассивируется в смеси азотной и плавиковой кислот? Как можно предотвратить пассивирование?
- 6. Различаются ли по составу оксиды, образующиеся при прокаливании на воздухе хрома и вольфрама; марганца и рения?
- 7. Охарактеризуйте отношение к разбавленным и концентрированным соляной и серной кислотам оксидов: CrO, Cr_2O_3 , CrO_3 ; MnO, MnO_2 , Mn_2O_7 .
- 8. Как и почему изменяются кислотно-основные и окислительно-восстановительные свойства гидроксидов в рядах: $H_2CrO_4-H_2WO_4$ и $HMnO_4-HReO_4$; $Cr(OH)_2-Cr(OH)_3-H_2CrO_4$ и $Mn(OH)_2-MnO_2\cdot nH_2O-HMnO_4$?
- 9. Какие продукты образуются при действии растворов щелочей на растворы солей Cr (II) и Mn (II) на воздухе и в инертной атмосфере? Как влияет температура на состав продуктов?
- 10. Сравните ионы, образуемые марганцем в разной степени окисления по их склонности в водном растворе к участию в следующих реакциях: гидролизу, восстановлению в кислой среде; окислению в щелочной среде; диспропорционированию; переходу в щелочной среде в анионную форму.
- 11. Какие из перечисленных ниже свойств характерны для солей хрома (II, III, VI): соли в катионной форме; в анионной форме; соли как в катионной так и в анионной формах; склонность к реакциям присоединения с образованием двойных солей или комплексных соединений; легкая гидролизуемость в растворе; переход в щелочном растворе в гидроксокомплексы; легкое окисление; наличие окислительных свойств?
- 12. Сравните гидролизуемость следующих соединений: $CrCl_2$, $CrCl_3$, CrO_2Cl_3 ; $CrCl_3$ и $Na_3[Cr(OH)_6]$; $Na_3[Cr(OH)_6]$ и Na_2CrO_4 ; Na_2CrO_4 и CrO_2Cl_2 .

d-Элементы и их соединения. Подгруппа VIIIB.

- 1. Какие из перечисленных ниже факторов лежат в основе деления *d*-элементов VIII группы на семейства железа и платиновых металлов и на триады Fe–Ru–Os, Co–Rh–Ir, Ni–Rd–Pt: аналогия в структуре двух внешних электронных слоев атомов; близость размеров атомов; близость энергий ионизации; близкие значения наиболее характерных валентных состояний и степеней окисления атомов; одинаковые значения максимальных валентностей и степеней окисления атомов; аналогия в химических свойствах элементов и их соединений?
 - 2. Какие степени окисления наиболее характерны для элементов семейства железа? Можно ли их предсказать основываясь на особенностях электронных конфигураций атомов? Какие максимальные степени окисления возможны в группах Fe–Ru–Os; Co–Rh–Ir; Ni–Pd–At.
 - 3. Чем обусловлена склонность атомов или ионов d-элементов VIII группы к образованию координационных соединений? Могут ли атомы рассматриваемых элементов в нулевой степени окисления образовывать координационные соединения?
 - 4. Охарактеризуйте отношение металлов семейства железа и платиновых к воде, кислотам, щелочам, "царской водке". Чем объясняется высокая химическая инертность платиновых ме- таллов? В какой степени окисления ионы железа переходят в раствор при взаимодействии с ки- слотами?
 - 5. Какие процессы происходят при коррозии железа? Влияет ли на коррозию и как присут-

ствие в воздухе газов O_2 , CO_2 , H_2S , SO_2 ?

- 6. Какой металл разрушается первым при коррозии, протекающей на поврежденной поверхности железа: оцинкованного, луженного, никелированного? Рассмотрите химизм процесса коррозии в этих случаях.
- 7. В чем специфика отношения рассматриваемых металлов к водороду? Гидриды какого типа образуют эти металлы?
- 8. Охарактеризуйте общие принципы получения оксидов и гидроксидов железа, кобальта и никеля (II и III).
- 9. Сравните отношение оксидов и гидроксидов железа, кобальта и никеля (II и III) к кислотам (серной, соляной, азотной) и щелочам.
- 10. Чем объяснить разнообразие встречающихся формул гидроксида железа (III): $Fe(OH)_3$, FeOOH, $HFeO_2$, Fe_2O_3 : $3H_2O$, Fe_2O_3 : nH_2O ? Возможно ли такое разнообразие записи формул гидроксида железа (II); гидроксида кобальта (III)?
- 11. Какие соли железа Fe (II) или Fe (III) сильнее подвергаются гидролизу? Какие продукты помимо $FeOH^{2+}$, $Fe(OH)_2^+$ и $Fe(OH)_3$ могут образовываться при гидролизе солей железа(III)?

Критерии оценок:

Оценка «отлично» выставляется обучающемуся, если он успешно применяет развитые навыки анализа историко-методологических проблем, в том числе в междисциплинарных областях;

Оценка «хорошо», если обучающийся в целом обладает навыком анализа историко-методологических проблем;

Оценка «удовлетворительно», если обучающийся обладает общим представлением, но несистематически применяет навыки анализа историко-методологических проблем;

Оценка «неудовлетворительно», если обучающийся обладает фрагментарным применением навыков анализа историко-методологических проблем.

Составитель: Гл. Изука Т.В. Щука

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ПРИДНЕСТРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. Т.Г. ШЕВЧЕНКО»

ЕСТЕСТВЕННО-ГЕОГРАФИЧЕСКИЙ ФА-КУЛЬТЕТКАФЕДРА ХИМИИ И МПХ

Контрольные работы по дисциплине "Неорганическая химия"

Комплексные соединения.

Вариант №1

Для каждого соединения выполнить следующие действия:

- а) написать название /эмпирическую формулу;
- б) указать центральный атом, его степень окисления, координационное число;
 - в) выписать все монодентантные и полидентантные лиганды;
 - г) написать структурную формулу;
 - 1. дитиоцианатодиамминокупрум(II)
 - 2. калий динитродихлородиамминокобальт(III)
 - 3. [Co(CN)₂(H₂O)₄]Cl
 - 4. $[Cr(NH_3)_2(en)_2]^{3+}$

Вариант №2

Для каждого соединения выполнить следующие действия:

- а) написать название /эмпирическую формулу;
- б) указать центральный атом, его степень окисления, координационное число;
- в) выписать все монодентантные и полидентантные лиганды;
- г) написать структурную формулу;
 - 1. нитроцианобис(этилендиамин)платина(IV) нитрат
 - 2. дихлордиамминоплатина(II)
 - 3. $[Co(H_2O)_3enCl]^{2+}$
 - 4. Al(SCN)₂(NH₃)₄](NO₂)

Вариант №3

Для каждого соединения выполнить следующие действия:

- а) написать название /эмпирическую формулу;
- б) указать центральный атом, его степень окисления, координационное число;
- в) выписать все монодентантные и полидентантные лиганды;
- г) написать структурную формулу;
 - 1. натрий дихлордиоксалатокобальт(III)
 - 2. тринитротриамминоко-

бальт(III)3. $[Co(H_2O)_5(NH_3)]Cl_3$

4. $K[Cr(SCN)_2py_2Cl_2]$

Вариант №4

Для каждого соединения выполнить следующие действия:

- а) написать название /эмпирическую формулу;
- б) указать центральный атом, его степень окисления, координационное число;
- в) выписать все монодентантные и полидентантные лиганды;
- г) написать структурную формулу;

- 1. дихлортриамминоаквакобальт(III) бромид
- 2. калий дихлордибромдиамминохромат(III)
- 3. $[Cr(NH_3)_2enCl_2]Br$
- 4. $[Pt(NH_3)_4(CN)_2][Pt(CN)_4]$

Для каждого соединения выполнить следующие действия:

- а) написать название /эмпирическую формулу;
- б) указать центральный атом, его степень окисления, координационное число;
- в) выписать все монодентантные и полидентантные лиганды;
- г) написать структурную формулу;
 - 1. тринитротриамминохром(III)
 - 2. тетраамминоплатина(II) тетрахлоропалладат(II)
 - 3. $[FeCl_2Br_2en]^{2-}$
 - 4. [PtClBrI(NH₃)]

Вариант №6

Для каждого соединения выполнить следующие действия:

- а) написать название /эмпирическую формулу;
- б) указать центральный атом, его степень окисления, координационное число;
- в) выписать все монодентантные и полидентантные лиганды;
- г) написать структурную формулу;
 - 1. дибромотетрааквахром(III) хлорид
 - 2. калий дибромодинитро(глицинато)кобальт (III)
 - 3. $[NiCl_2Br_2]^{2-}$
 - 4. [PdCl(NH₃)₃]I

Молекулярные растворы.

Вариант №1

- 1. Для приготовления 5%-ного (по массе) раствора MgSO₄ взято 400г MgSO₄ ·7H₂O. Найти массу полученного раствора.
- 2. Какой объем 2H раствора H₃PO₄ пойдет на осаждение 50 мл 10% раствора AgNO₃?
- 3. Какой объем раствора фосфорной кислоты с массовой долей H_3PO_4 36% ($\rho = 1216 \text{ кг/м}^3$) требуется для приготовления 13 л 0,15 н. раствора H_3PO_4 ?
- 4. Найти массу глюкозы $C_6H_{12}O_6$, содержащейся в 2 л раствора, если его осмотическое давление такое же, как у раствора, содержащего в 4 л при той же температуре 3 г формалина HCHO?
- 5. Давление пара воды при 50 °C равно 12334 Па. Вычислите давление пара раствора, содержащего 50 г этиленгликоля $C_2H_4(OH)_2$ в 900 г воды.
- 6. При растворении 3,24 г серы в 40 г бензола температура кипения увеличилась, на 0,81 К. Из скольких атомов состоит молекула серы в растворе?

Вариант № 2

- 1. Сколько граммов 30 %-ного (по массе) раствора NaCl нужно добавить к 300 г воды, чтобы получить 10 %-ный раствор соли?
- 2. Сколько грамм MgSO₄ · $7H_2$ O надо добавить к 200 г 10 % раствора MgSO₄, чтобы получить 18 % раствор?
- 3. Какой объем 0,1 M раствора H₃PO₄ можно приготовить из 75 мл 0,75 н. раствора?
- 4. Вычислить осмотическое давление раствора, содержащего 16 г сахарозы $C_{12}H_{22}O_{11}$ в 350 г H_2O при 293 К. Плотность раствора считать равной единице.

- 5. При 50 °C давление пара раствора, содержащего в 200 г этилового спирта C₂H₅OH 23 г вещества, равно 207,2 мм ртутного столба. Давление пара чистого спирта при той же темпера- туре равно 219,8 мм ртутного столба. Определить молекулярную массу вещества.
- 6. Температура кипения водного раствора $C_{12}H_{22}O_{11}$ равна 101,4 °C. Вычислить моляльную концентрацию и массовую долю вещества в растворе. При какой температуре замерзает раствор?

Химия элементов.

Вариант № 1

- **I.** Определите продукт окисления простого вещества *германия* в горячей концентрирован-ной HNO₃. Напишите и уравняйте уравнение реакции.
- **II.** Определите, какие свойства проявляет оксид As_2O_3 в реакциях с кислотами и щелочами. Подтвердите уравнениями реакции.

Ответы. А) Кислотные. Б) Амфотерные. В) Основные.

- **III.** Определите, какую функцию выполняет вещество *HOCN* в протолитических реакциях сводой.
 - А) Сильная кислота. В) Сильное основание.
 - Б) Слабая кислота. Г) Слабое основание. Д) Непротолит.
- **IV.** Перечислите элементы IIA-группы периодической системы, для которых возможно про- текание реакции $\mathcal{G}^{2+} + OH^- = \dots$ Написать уравнения реакций.
- **V.** Составьте уравнение реакции $I_2 + KOH =$
- **VI.** Перечислите элементы (кроме радиоактивных) *IIIA*-группы периодической системы, простые вещества которых взаимодействуют с реагентом *HCl (разб.)*. Написать уравне- ния реакций.
- **VII.** Определите, как меняется устойчивость степени окисления +3 по IIIA-группе сверху вниз.
 - А) Увеличивается. Б) Уменьшается. В) Меняется немонотонно.
- **VIII.** Определите, какие кислотно-основные свойства проявляет оксид Mn_2O_7 в реакциях с ки-слотами и щелочами.
- **IX.** Какими окислительно-восстановительными свойствами обладает вещество NiO(OH). А) Окислитель. В) Окислитель и восстановитель.
 - Б) Восстановитель.
- **X.** Укажите изменившиеся в результате окислительно-восстановительной реакции $K_2MnO_4 + H_2O = ...$ степени окисления атома d-элемента.

Вариант № 2

- **I.** Определите продукт окисления простого вещества фосфора горячей концентрированной HNO₃. В ответе укажите число атомов в формульной единице.
- **II.** Определите, какие свойства проявляет оксид *CaO* в реакциях с кислотами и щелочами. *Ответы*. А) Кислотные. Б) Амфотерные. В) Основные.
- **III.** Определите, какую функцию выполняет вещество N_2H_4 в протолитических реакциях. А) Сильная кислота. В) Сильное основание.
 - Б) Слабая кислота. Г) Слабое основание. Д) Непротолит.
- **IV.** Используя справочные данные, определите значение pH в водном растворе *гидрокабоната натрия* (при 25 °C).

A)
$$pH < 7$$
. B) $pH > 7$.

- **V.** Перечислите элементы (кроме радиоактивных) IVA-группы периодической системы, длякоторых возможно протекание реакции $3O_3^{2^-} + Mg^{2^+} = \dots$ В ответе укажите номера пе- риодов (в порядке возрастания), в которых находится соответствующий элемент.
- VI. Составьте уравнение реакции $K_3[Cr(OH)_6] + Br_2 + KOH = \dots$ В ответе укажите сумму

- стехиометрических коэффициентов в уравнении.
- **VII.** Укажите формулу комплексного продукта реакции $BeCl_2 + NaOH = ...$, протекающей в водном растворе. В ответе укажите последовательно число внешнесферных атомов и число лигандов во внутренней сфере комплекса.
- **VIII.** Перечислите элементы (кроме радиоактивных) VA-группы периодической системы, про- стые вещества которых взаимодействуют с HNO_3 (конц). В ответе укажите номера перио- дов (в порядке возрастания), в которых находятся эти элементы.
- **IX.** Укажите значение pH раствора, полученного при действии на воду простейших водо-родных соединений *щелочноземельных металлов*.

- **Х.** Определите, как меняется устойчивость степени окисления +5 по VA- группе сверхувниз.
 - А) Увеличивается. Б) Уменьшается. В) Меняется немонотонно.

Домашняя контрольная работа

Вводное занятие: правила работы в химической лаборатории. Техника безопасности и оказание первой помощи. Номенклатура неорганических веществ. Лабораторная посуда, реактивы, квалификация чистоты.

Вариант № 1

- 1. Назовите химические соединения; укажите, к какому классу они относятся: Fe_2O_3 , $Fe(OH)_3$, $Fe_2(SO_4)_3$, $Fe(HSO_4)_3$, $FeOHSO_4$, $FeSO_4 \cdot 7H_2O$, FeOCl, $H_2Cr_2O_7$. Назовите ионы: Fe^{3+} , $FeOH^+$, $Fe(OH)_2^+$, $HSiO_3^-$.
- 2. Напишите формулы химических соединений и ионов: фосфат гидроксомарганца(II), гидро- карбонат кальция, сульфат аммония, оксид хрома(VI), пентагидрат сульфата меди(II), ион дигидроксохрома(III), дигидрофосфат—ион.

Вариант № 2

- 1. Назовите химические соединения; укажите, к какому классу они относятся: MnO, MnSO₄·7H₂O, (MnOH)₂CO₃, Mn(OH)₂, HMnO₄, Mn(HCO₃)₂, Mn₃(PO₄)₂, SbOCl. Назовите ионы: Sn²⁺, MgOH⁺, MnO₄ , HPO₄ .
- 2. Напишите формулы химических соединений и ионов: оксид свинца(IV), гидроксид свинца(II), гептагидрат сульфата железа(II), гидроксид хрома (III), хлорид оксожелеза(III), ион гидроксомеди(II), гидросульфат-ион.

Вариант № 3

- 1. Назовите химические соединения; укажите, к какому классу они относятся: PbO_2 , $Pb(OH)_2$, $(PbOH)_2SO_4$, $Pb(MnO_4)_2$, $Pb(HCO_3)_2$, $Pb(NO_3)_2 \cdot 4H_2O$, H_2MnO_4 , $FeONO_3$. Назовите ионы: Mn^{2+} , $MnOH^+$, MnO^- , HCO^- .
- 2. Напишите формулы химических соединений и ионов: оксид железа(III), гидроксид цинка, фосфат никеля(II), гексагидрат хлорида кальция, ион аммония, ион гидроксоалюминия, ди- хромат-ион.

Строение электронных оболочек атомов. Периодический закон (ПЗ) и периодическая система (ПС) элементов

Вариант № 1

1. В каком периоде, группе, подгруппе находятся элементы, электронные формулы валентно- го слоя которых: ... $5s^25p^4$; ... $4d^{10}5s^2$? Назовите эти элементы. К каким семействам они от- носятся?

- 2. Составьте полные электронные формулы и электронно-структурные диаграммы валентногослоя атомов: Pb; Cs; Zn.
- 3. Какие частицы образуются, если атом серы отдаёт 4 или присоединяет 2 электрона, а атом меди отдает 2 электрона? Составьте электронные формулы исходных атомов и образовав- шихся частиц. Укажите типы образовавшихся ионов по строению электронных оболочек.
- 4. Исходя из положения в ПС, назовите элемент с порядковым номером 25, охарактеризуйте свойства этого элемента (металл или неметалл) и его соединений (высшего оксида и соответствующего ему гидроксида).

- 1. В каком периоде, группе, подгруппе находятся элементы, электронные формулы валентно- го слоя которых: ... $3s^1$; ... $2s^22p^1$? Назовите эти элементы. К каким семействам они отно- сятся?
- 2. Составьте полные электронные формулы и электронно-структурные диаграммы валентногослоя атомов: C; Sr; Cr.
- 3. Какие частицы образуются, если атом фосфора отдаёт или присоединяет 3 электрона, аатом хрома отдает 3 электрона? Составьте электронные формулы исходных атомов и обра-зовавшихся частиц. Укажите типы образовавшихся ионов по строению электронных оболочек.
- 4. Исходя из положения в ПС, назовите элемент с порядковым номером 7, охарактеризуйте свойства этого элемента (металл или неметалл) и его соединений (высшего оксида и соответствующего ему гидроксида).

Современные теории химической связи. Природа химической связи с точки зрения метода ВС. Вариант № 1

- 1. Составьте электронно-структурные диаграммы частиц по методу BC: F_2 , HF, Be F_2 , BF $_3$,H $_2$ O.
- 2. Укажите типы гибридизации атомных орбиталей центрального атома в частицах BeF_2 , BF_3 , H_2O , если валентные углы равны соответственно 180° , 120° , $104,5^{\circ}$.

Вариант № 2

- 1. Составьте электронно–структурные диаграммы частиц по методу BC: Br₂, HBr, MgBr₂, AlBr₃, NH $_4^+$.
- 2. Укажите типы гибридизации атомных орбиталей центрального атома в частицах MgBr₂,AlBr₃, NH⁺, если валентные углы равны соответственно 180°, 120°, 109,5°.

Вариант № 3

- 1. Составьте электронно-структурные диаграммы частиц по методу ВС: Cl₂, HCl, BeCl₂, PbCl₂, NCl₃.
- 2. Укажите типы гибридизации атомных орбиталей центрального атома в частицах $BeCl_2,PbCl_2,NCl_3$, если валентные углы равны соответственно $180^{\circ},\approx 120^{\circ},107,5^{\circ}$.

Комплексные соединения.

Строение, классификация и устойчивость комплексных соединений

Вариант № 1

1. Напишите формулы КС:

карбонат хлородиакватриамминжелеза(III);тетрафтородиакваферрат(III) калия.

2. Назовите КС:

 $[NiCl_2(H_2O)_2(NH_3)_2]Cl;$ $K[Ag(CN)_2];$ $[CoBr_3(NH_3)_3].$

Для анионного КС укажите ц.а.; лиганды, донорные атомы лигандов; координационное число ц.а.; внешнюю и внутреннюю сферы КС.

Для катионного КС напишите уравнения первичной и вторичной диссоциации и выражение для общей константы нестойкости.

Вариант № 2

1. Напишите формулы КС:

хлорид дибромотетраамминхрома(III);трииодоамидомеркурат(II) натрия.

2. Назовите КС:

 $[Pt(NH_3)_2H_2OCl_3]$

K[ZnOHNH₃Cl₂];

 $[Al(OH)_3(H_2O)_3].$

Для катионного КС укажите ц.а.; лиганды, донорные атомы лигандов; координационное число ц.а.; внешнюю и внутреннюю сферы КС.

Для анионного КС напишите уравнения первичной и вторичной диссоциации и выраже-ние для общей константы нестойкости.

Растворы, способы выражения состава растворов. Решение ситуа- ционных задач. Приготовление растворов с заданным содержанием растворенного вещества.

Вариант № 1

- 1. К раствору массой 250 г с ω(соли) = 10% добавили эту же соль массой 15 г. Рассчитайтемассовую долю соли в полученном растворе.
- 2. Смешали раствор массой 200 г с ω (щелочи) = 1% с раствором массой 50 г с ω (щелочи) =4%. Вычислите массовую долю щелочи в полученном растворе.
- 3. Рассчитайте объем воды, который необходимо добавить к раствору объемом 500 мл с $\omega(\text{NaOH}) = 40\%$ ($\rho = 1,43 \text{ г/мл}$) для приготовления раствора с $\omega(\text{NaOH}) = 10\%$.

Вариант № 2

- 1. К раствору массой 300 г с $\omega(\text{ZnSO}_4) = 5\%$ добавили сульфат цинка массой 20 г. Рассчитайтемассовую долю ZnSO₄ в полученном растворе.
- Смешали раствор массой 150 г с ω (КОН) = 5% с раствором массой 200 г с ω (КОН) = 10%. Вычислите массовую долю щелочи в полученном растворе.
- Рассчитайте объем воды, который необходимо добавить к раствору объемом 0,5 л с массо- вой долей серной кислоты 20% ($\rho = 1,143 \text{ г/мл}$) для приготовления раствора с $\omega(H_2SO_4) = 12\%$.

Равновесные процессы в растворах электролитов. Теории кислот иоснований

Вариант № 1

- 1. Какие электролиты диссоциируют необратимо, а какие обратимо? Покажите это на примерах следующих электролитов: HClO₄, Ca(OH)₂, Al₂(SO₄)₃, H₃PO₄, NaHSO₃, MgOHCl, $KAl(SO_4)_2$. Назовите все образующиеся ионы по номенклатуре ИЮПАК.
- 2. Составьте молекулярные, полные и сокращенные ионно-молекулярные уравнения для сле- дующих реакций:
 - 1) $FeCl_3 + NaOH \rightarrow$
 - 2) Na₂CO₃ + HCl \rightarrow
 - 3) $AgNO_3 + Na_3PO_4 \rightarrow$

- 3. Укажите кислотно-основные сопряжённые пары в уравнениях протолитических реакций:
 - 1) $NH_3 + H_3O^+ \leftrightarrow NH_4^+ + H_2O$
 - 2) $NH_3 + HCl \leftrightarrow NH_4^+ + Cl^-$

- 1. Какие электролиты диссоциируют необратимо, а какие обратимо? Покажите это на примерах следующих электролитов: HCl, Fe(OH)₂, ZnSO₄, H₂SO₃, (FeOH)₂SO₄, Ca(HSO₄)₂, $(NH_4)_2$ Fe(SO₄)₂. Назовите все образующиеся ионы по номенклатуре ИЮПАК.
- 2. Составьте молекулярные, полные и сокращенные ионно-молекулярные уравнения для сле- дующих реакций:
 - 1) $AlCl_3 + NaOH \rightarrow$
 - 2) NaCl + AgNO₃ \rightarrow
 - 3) $HBr + Na_2CO_3 \rightarrow$
- 3. Укажите кислотно-основные сопряжённые пары в уравнениях протолитических реакций:
 - 1) $H_3PO_4 + H_2O \leftrightarrow H_4PO_4^+ + OH^-$
 - 2) $CH_3COOH + NH_3 \leftrightarrow CH_3COO^- + NH_4^+$

Равновесные процессы в растворах электролитов. Произведение растворимости. Гидролиз солей. Вариант № 1

- 1. Какая из приведенных солей подвергается гидролизу только по катиону, а какая только поаниону: NaCl, CuSO₄, Na₃PO₄, Fe(CH₃COO)₂? Составьте ионно-молекулярные и молекуляр- ные уравнения гидролиза этих солей. Укажите ориентировочное значение pH растворов этих солей (pH>7, pH<7, pH \approx 7). Назовите продукты гидролиза по номенклатуре ИЮПАК (адаптированный вариант).
- 2. Допишите продукты гидролиза, учитывая, что это случай совместного гидролиза: $Al_2(SO_4)_3 + K_2S + H_2O \rightarrow ...$

Вариант № 2

- 1. Какая из приведенных солей подвергается гидролизу только по катиону, а какая только поаниону: K_2SO_4 , $ZnSO_4$, KNO_2 , $Ni(CH_3COO)_2$? Составьте ионно-молекулярные и молекуляр- ные уравнения гидролиза этих солей. Укажите ориентировочное значение pH растворов этих солей (pH>7, pH<7, pH \approx 7). Назовите продукты гидролиза по номенклатуре ИЮПАК (адаптированный вариант).
- 2. Допишите продукты гидролиза, учитывая, что это случай совместного гидролиза: FeCl₃+ $Na_2CO_3 + H_2O \rightarrow \dots$

Окислительно-восстановительные реакции. Метод полуреакций. Вариант № 1

Составьте схемы электронного баланса. Расставьте коэффициенты, укажите окислитель и восстановитель, процессы восстановления и окисления:

- 1) $Al + H_2O + NaOH \rightarrow Na[Al(OH)_4(H_2O)_2] + H_2$
- 2) $Fe_2O_3 + CO \rightarrow Fe + CO_2$
- 3) $AgNO_3 + H_2 \rightarrow Ag + NO + H_2O$
- 4) $MnO_2 + KClO_3 + KOH \rightarrow K_2MnO_4 + KCl + H_2O$
- 5) $Fe(NO_3)_3 \rightarrow Fe_2O_3 + NO_2 + O_2$

Вариант № 2

Составьте схемы электронного баланса. Расставьте коэффициенты, укажите окислитель и восстановитель, процессы восстановления и окисления:

1) $H_2O_2 + KMnO_4 \rightarrow O_2 + MnO_2 + KOH + H_2O$

- 2) $\operatorname{Sn} + \operatorname{NaOH} + \operatorname{H_2O} \rightarrow \operatorname{Na_2}[\operatorname{Sn}(\operatorname{OH})_6] + \operatorname{H_2}$
- 3) $Cu + HNO_{3(KOHIL)} \rightarrow Cu(NO_3)_2 + NO_2 + H_2O$
- 4) $FeS + O_2 \rightarrow Fe_2O_3 + SO_2$
- 5) $Cu(NO_3)_2 \rightarrow CuO + NO_2 + O_2$

Составьте схемы электронного баланса. Расставьте коэффициенты, укажите окислитель и восстановитель, процессы восстановления и окисления:

- 1) $Cr_2O_3 + KClO_3 + KOH \rightarrow K_2CrO_4 + KCl + H_2O$
- 2) $NO_2 + O_2 + NaOH \rightarrow NaNO_3 + H_2O$
- 3) $P + HNO_3 + H_2O \rightarrow H_3PO_4 + NO$
- 4) $Bi_2S_3 + HNO_3 \rightarrow Bi_2(SO_4)_3 + NO + H_2O$
- 5) $Cl_2 + KOH \rightarrow KCl + KClO + H_2O$

p-Элементы VI и VII групп.

Вариант № 1

1. Составьте уравнения полуреакций (методом ионно-электронного баланса), на их основе до-пишите продукты реакции и расставьте коэффициенты:

a)
$$Na_2S + K_2Cr_2O_7 + H_2SO_4 \rightarrow S + Cr_2(SO_4)_3 + ...6$$
) $Na_2S_2O_3 + Br_2 + H_2O \rightarrow H_2SO_4 + NaBr + ...$

Укажите окислитель и его восстановленную форму, восстановитель и его окисленную фор-му.

- 2. Используя поляризационные представления, теоретически обоснуйте способность ионов соли Na₂S к гидролизу. Составьте ионно-молекулярное и молекулярное уравнения гидроли-за этой соли, а также рассмотрите гидролиз с позиций протолитической теории кислот и оснований. Укажите значение pH раствора Na₂S (pH>7, pH<7, pH≈7). Назовите продукты гидролиза по номенклатуре ИЮПАК.
- 3. Решите задачу.

Определите массу NaBr, которую необходимо добавить к раствору массой 280 г с ω (NaBr) = 14%, чтобы получить раствор с ω (NaBr) = 17%.

Вариант № 2

1. Составьте уравнения полуреакций (методом ионно-электронного баланса), на их основе до- пишите продукты реакции и расставьте коэффициенты:

a)
$$Na_2SO_3 + K_2CrO_4 + NaOH \rightarrow Na_2SO_4 + Cr_2(SO_4)_3 + ...$$

 $+ ...$ $+ ...$ $+ ...$ $+ ...$ $+ ...$ $+ ...$ $+ ...$ $+ ...$ $+ ...$ $+ ...$ $+ ...$ $+ ...$ $+ ...$ $+ ...$ $+ ...$ $+ ...$ $+ ...$ $+ ...$ $+ ...$

Укажите окислитель и его восстановленную форму, восстановитель и его окисленную фор-му.

- 2. Назовите химические соединения по номенклатуре ИЮПАК (адаптированный вариант); укажите, к какому классу они относятся: SO_3 , H_2SO_3 , $Ca(HSO_3)_2$, $Fe_2(SO_4)_3$, $FeOHSO_4$, $(PbOH)_2SO_4$, $NiSO_4 \cdot 7H_2O$, MnS, $Na_2S_2O_3$. Назовите ионы: $SO_4^{\ 2-}$, $SO_3^{\ 2-}$, HS^- , $S_2O_8^{\ 2-}$.
- 3. Решите задачу.

Определите массу NaBr, которую необходимо добавить к раствору массой 300 г с ω (NaBr) = 10%, чтобы получить раствор с ω (NaBr) = 25%.

р-элементы V группы

Вариант № 1

1. Составьте уравнения полуреакций (методом ионно-электронного баланса), на их основе до- пишите продукты реакции и расставьте коэффициенты:

a)
$$KNO_2 + KMnO_4 + H_2SO_4 \rightarrow KNO_3 + MnSO_4 + ...6$$
) $Bi(NO_3)_3 + SnCl_2 + NaOH \rightarrow Bi + Na_2SnO_3 + ...$

- 2. Объясните различие валентных углов в NBr₃ (∠107,5°) и PBr₃ (∠90°). Составьте электронно-структурную диаграмму молекулы PBr₃. Изобразите перекрывание атомных орбиталей, об- разующих связи в этой молекуле. Укажите тип связей по характеру перекрывания атомных орбиталей и форму молекулы.
- 3. Назовите КС $K_4[Fe(CN)_5NO_2]$, укажите его составные части, напишите уравнения первич- ной и вторичной диссоциации, выражение для общей константы нестойкости.

1. Составьте уравнения полуреакций (методом ионно-электронного баланса), на их основе до- пишите продукты реакции и расставьте коэффициенты:

```
a) KNO_2 + K_2Cr_2O_7 + H_2SO_4 \rightarrow KNO_3 + Cr_2(SO_4)_3 + ... 6) Bi(NO_3)_3 + SnCl_2 + NaOH \rightarrow Bi + Na_2SnO_3 + SnCl_2 +
```

- 2. Используя поляризационные представления, теоретически обоснуйте способность ионов соли K_3PO_4 к гидролизу. Составьте ионно-молекулярное и молекулярное уравнения гидро- лиза этой соли, а также рассмотрите гидролиз с позиций протолитической теории кислот и оснований. Укажите значение pH раствора K_3PO_4 (pH>7, pH<7, pH≈7). Назовите продукты гидролиза по номенклатуре ИЮПАК.
- 3. Объясните различие валентных углов в NH_3 ($\angle 107,5^\circ$) и AsH_3 ($\angle 90^\circ$). Составьте электронно-структурную диаграмму молекулы AsH_3 . Изобразите перекрывание атомных орбиталей, образующих связи в этой молекуле. Укажите тип связей по характеру перекрывания атом- ных орбиталей и форму молекулы.

р–Элементы III и IV групп

Вариант № 1

- 1. Сульфид алюминия Al_2S_3 получают только сухим путем, например, спеканием порошков алюминия с серой. Напишите уравнение этой реакции. Что произойдет с полученными желтыми кристаллами при их контакте с водой? Ответ подтвердите уравнением реакции.
- 2. Составьте ионно-молекулярное и молекулярное уравнения гидролиза тетрабората натрия. Укажите значение pH раствора (pH>7, pH<7, pH≈7). Обоснуйте смещение равновесия гид- ролиза вправо при добавлении к раствору тетрабората натрия кислоты.
- 3. Опишите качественные реакция на карбонат- и гидрокарбонат- ионы. Напишите уравнения соответствующих реакций. Укажите аналитический эффект.
- 4. Как можно получить гидроксид олова(II) в лаборатории? Какими свойствами он обладает с точки зрения теории электролитической диссоциации? Ответ подтвердите уравнениями ре- акций.

Вариант № 2

1. Допишите уравнение реакции $Al_2(SO_4)_3 + Na_2CO_3 + H_2O \rightarrow ...$, учитывая значения ПР воз-можных продуктов:

$$\Pi pAl(OH)_3 = 1 \cdot 10^{-32}, \Pi pAlOH^{2+} \cdot 2OH = 1 \cdot 10^{-23}.$$

- 2. Как можно получить гидроксид алюминия в лаборатории? Какими свойствами он обладаетс точки зрения теории электролитической диссоциации? Ответ подтвердите уравнениями реакций.
- 3. Охарактеризуйте углерод, исходя из положения в периодической системе элементов: элек- тронная формула и электронно-структурная диаграмма, возможные степени окисления, особенности строения атома углерода.
- 4. Составьте ионно-молекулярное и молекулярное уравнения гидролиза нитрата свинца (II). Укажите значение pH раствора (pH>7, pH<7, pH≈7). Рассмотрите процесс гидролиза с точкизрения протолитической теории кислот и оснований.

s-Элементы I и II групп.

Вариант № 1

1. Назовите химические соединения по номенклатуре ИЮПАК (адаптированный вариант);

укажите, к какому классу они относятся:

 $Na_2CrO_4 \cdot 2H_2O$, $Mg(HCO_3)_2$, $(NH_4)_2Mg(SO_4)_2$, KH_2PO_4 , $CaOCl_2$, NH_4CaPO_4 , $Ca(H_2PO_4)_2 \cdot H_2O$, CaO_2 , $Ba(HS)_2$.

2. Решите задачу.

Рассчитайте молярную концентрацию (C) раствора с ω (NaOH) = 16,0% и ρ = 1,175 г/мл.

3. Решите задачу.

Рассчитайте значение рН в $0.5 \cdot 10^{-2}$ М растворе $Ca(OH)_2$.

Вариант № 2

- 1. Используя поляризационные представления, теоретически обоснуйте способность ионов следующих солей к гидролизу: MgCl₂, NaNO₃, K₂SO₃. Составьте ионно-молекулярные и молекулярные уравнения реакций гидролиза, а также рассмотрите гидролиз с позиций про- толитической теории кислот и оснований.
- 2. Решите задачу.

Рассчитайте массовую долю (ω) Na₂SO₄ в растворе с молярной концентрацией C = 0,144 моль/л и ρ = 1,028 г/мл.

3. Решите задачу.

В 3 л раствора содержится 0.3×10^{-3} моль HNO₃. Рассчитайте значение ρ OH этого раствора.

d-Элементы I и II групп.

Вариант № 1

1. Напишите уравнения реакций, при помощи которых можно осуществить следующие превращения:

$$Cu \vdash CuSO_4 \vdash (CuOH)_2SO_4 \vdash [Cu(NH_3)_4]SO_4$$

- 2. Используя поляризационные представления, теоретически обоснуйте способность ионов соли $ZnSO_4$ к гидролизу. Составьте ионно-молекулярное и молекулярное уравнения реакции гидролиза этой соли, а также рассмотрите гидролиз с позиций протолитической теории кислот и оснований. Укажите ориентировочное значение pH раствора (pH>7, pH \approx 7).
- 3. Напишите уравнения реакций, при помощи которых можно осуществить превращения: $Hg \rightarrow Hg_2(NO_3)_2 \rightarrow Hg_2Cl_2 \rightarrow HgNH_2Cl$

Вариант № 2

1. Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

$$Ag \rightarrow AgNO_3 \rightarrow AgBr \rightarrow [Ag(NH_3)_2]Br$$

- 2. Используя поляризационные представления, теоретически обоснуйте способность ионов соли $CuSO_4$ к гидролизу. Составьте ионно-молекулярное и молекулярное уравнения реакции гидролиза этой соли, а также рассмотрите гидролиз с позиций протолитической теории кислот и оснований. Укажите ориентировочное значение pH раствора (pH>7, pH \approx 7).
- 3. Напишите уравнения реакций, при помощи которых можно осуществить превращения: $Hg \to HgO \to HgCl_2 \to Hg2Cl_2 \to HgNH_2Cl$

d-Элементы VI и VII групп

Вариант № 1

1. Напишите уравнений реакций, с помощью которых можно осуществить следующие превращения:

$$Na_2CrO_4 \rightarrow Na_2Cr_2O_7 \rightarrow K_2CrO_4 \rightarrow PbCrO_4$$

Назовите соединения хрома, участвующие в превращениях, по номенклатуре ИЮПАК.

2. Используя поляризационные представления, теоретически обоснуйте способность ионов соли Cr(NO₃)₃ к гидролизу. Составьте ионно-молекулярное и молекулярное уравнения ре- акций гидролиза этой соли, а также рассмотрите гидролиз с позиций протолитической тео- рии кислот и оснований. Укажите ориентировочное значение pH раствора Cr(NO₃)₃

 $(pH>7, pH<7, pH\approx7).$

3. Составьте уравнения полуреакций (методом ионно-электронного баланса), на их основе до- пишите продукты реакции и расставьте коэффициенты:

$$MnSO_4 + PbO_2 + HNO_3 \rightarrow HMnO_4 + PbSO_4 + ...$$

Укажите окислитель и его восстановленную форму, восстановитель и его окисленную фор-му.

Вариант № 2

1. Напишите уравнений реакций, с помощью которых можно осуществить следующие превращения:

$$CrCl_3 \rightarrow Na_3[Cr(OH)_6] \rightarrow Cr_2(SO_4)_3 \rightarrow Cr(OH)_3$$

Назовите соединения хрома, участвующие в превращениях, по номенклатуре ИЮПАК.

- 2. Напишите электронные формулы атома хрома, его ионов (реальных и возможного гипотетического), укажите типы электронных оболочек ионов. Рассмотрите гидролиз иона Cr(III)с позиций протолитической теории кислот и оснований.
- 3. Составьте уравнения полуреакций (методом ионно-электронного баланса), на их основе до- пишите продукты реакции и расставьте коэффициенты:

$$KMnO_4 + H_2S + H_2SO_4 \rightarrow MnSO_4 + S + \dots$$

Укажите окислитель и его восстановленную форму, восстановитель и его окисленную форму.

d-Элементы VIII группы

Вариант № 1

- 1. Назовите вещества по номенклатуре ИЮПАК (адаптированный вариант): $FeONO_3, Fe_2(SO_4)_3 \cdot 9H_2O, CoCl_2, Ni(OH)_3, (CoOH)_2SO_4.$
- 2. Используя поляризационные представления, теоретически обоснуйте способность ионов соли сульфата железа (II) к гидролизу. Напишите ионно-молекулярное и молекулярное уравнения реакции гидролиза этой соли, а также рассмотрите гидролиз с позиций протоли- тической теории кислот и оснований. Укажите ориентировочное значение pH раствора (pH>7, pH<7, pH≈7).
- 3. Напишите уравнение качественной реакции на ион железа(II). Приведите тривиальные на- звания и названия по номенклатуре ИЮПАК (адаптированный вариант) комплексных со- единений, встречающихся в этой реакции.

Вариант № 2

1. Напишите уравнения реакций, при помощи которых можно осуществить превращения: $Fe(OH)_2 \rightarrow FeSO_4 \rightarrow FeOHSO_4 \rightarrow Fe(OH)_3$

Для окислительно-восстановительной реакции определите коэффициенты методом ионно- электронного баланса (методом полуреакций). Назовите все вещества в цепочке превраще- ний по номенклатуре ИЮПАК (адаптированный вариант).

- 2. Используя поляризационные представления, теоретически обоснуйте способность ионов соли сульфата железа(III) к гидролизу. Напишите ионно-молекулярное и молекулярное уравнения реакции гидролиза этой соли, а также рассмотрите гидролиз с позиций протоли- тической теории кислот и оснований. Укажите ориентировочное значение pH раствора (pH>7, pH<7, pH≈7).
- 3. Напишите уравнение качественной реакции на ион железа(III) с желтой кровяной солью. Приведите тривиальное название и название по номенклатуре ИЮПАК (адаптированный вариант) комплексного соединения, образующегося в результате реакции.

Составитель: Т. Инука

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ПРИДНЕСТРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. Т.Г. ШЕВЧЕНКО»

ЕСТЕСТВЕННО-ГЕОГРАФИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ХИМИИ И МПХ

Вопросы для промежуточной аттестации (экзамена) по дисциплине "Неорганическая химия"

- 1. Основные законы химии. Законы естествознания. Закон постоянства состава соединений. Закон кратных отношений. Закон эквивалентов.
- 2. Газовые законы. Закон Гей-Люссака. Закон Авогадро. Уравнение состояния идеального газа. Уравнение Менделеева Клайперона. Закон удельных теплоемкостей.
- 3. Физико-химическая природа растворов и процесса растворения. Законы идеальных растворов. Осмос. Осмотическое давление. Закон Вант-Гоффа. Законы Рауля.
- 4. Теория электролитической диссоциации. Отклонение электролитов от законов идеальных растворов. Степень электролитической диссоциации. Факторы, влияющие на степень электролитической диссоциации.
- 5. Слабые электролиты. Константа электролитической диссоциации. Закон разбавления Оствальда. Зависимость степени электролитической диссоциации от концентрации раствора.
- 6. Сильные электролиты. Ионные пары и ассоциаты. Кажущаяся степень электролитической диссоциации. Активность ионов в растворе. Ионная сила раствора. Закон Дебая Хюккеля.
- 7. Влияние на степень электролитической диссоциации природы растворителя, одноименного иона, температуры.
- 8. Современные теории кислот и оснований. Теория Аррениуса. Протолитическая теория кислот и оснований Бренстеда и Лоури. Электронная теория Льюиса.
- 9. Ионное произведение воды. Водородный показатель. Индикаторы.
- 10. Равновесия в растворах электролитов. Буферные растворы. Произведение растворимости.
- 11. Гидролиз солей Степень и константа гидролиза. Факторы, влияющие на степень и константа гидролиза.
- 12. Гидролиз солей образованных слабым основанием и сильной кислотой. Среда раствора. Механизм гидролиза.
- 13. Гидролиз солей, образованных сильным основанием и слабой кислотой. Среда раствора. Механизм гидролиза.
- 14. Гидролиз солей, образованных слабым основанием и слабой кислотой. Среда раствора. Механизм гидролиза.
- 15. Окислительно-восстановительные реакции. Типы реакций. Окислительный и восстановительный процессы. Окислитель. Восстановитель.
- 16. Атомные модели. Теория строения атома. Электрон. Состояние электрона в атоме. Энергетические уровни и подуровни. Атомная орбиталь. Квантовые числа.
- 17. Принципы распределения электронов в атомах по энергетическим уровням и подуровням
- 18. Периодический закон и периодическая система Д.И. Менделеева. Физический смысл периодического закона Д.И. Менделеева. Ионизационный потенциал. Энергия сродства к электрону. Вторичная периодичность.
- 19. Ионная связь. Механизм образования связи. Электроотрицательность. Свойства ионной связи. Кристаллические решетки. Поляризующее действие катиона.
- 20. Ковалентная связь. Механизм образования связи. Свойства связи. Типы связи. Донорно-

- акцепторное взаимодействие.
- 21. Гибридизация. Типы гибридизации. Условие гибридизации.
- 22. Метод валентных связей.
- 23. Фтор, получение, физические и химические свойства, соединения фтора с водородом и кислородом.
- 24. Хлор, получение, физические и химические свойства. Хлороводород, получение, физические и химические свойства.
- 25. Кислородные соединения хлора. Оксиды, кислоты, соли, получение, физические и химические свойства.
- 26. Бром, иод, получение, физические и химические свойства. Водородные соединения брома и иода, получение, физические и химические свойства.
- 27. Кислородные соединения брома и иода, получение, физические и химические свойства.
- 28. Водород, физические и химические свойства, получение. Гидриды. Перекись водорода, физические и химические свойства.
- 29. Кислород, получение, аллотропические модификации, физические и химические свойства. Оксиды. Озон, озониды.
- 30. Сера, получение, аллотропические модификации, физические и химические свойства. Водородные соединения серы. Сероводород, полисульфиды.
- 31. Кислородные соединения серы в степени окисления +4. Оксид, кислота, соли, получение, физические и химические свойства.
- 32. Кислородные соединения серы в степени окисления +6. Оксид, кислота, соли, получение, физические и химические свойства.
- 33. Соединения серы со связью –S-S- и со связью –O-O-, получение, физические и химические свойства.
- 34. Характеристика элементов подгруппы селена. Простые вещества, водородные соединения, получение, физические и химические свойства.
- 35. Азот. Получение, физические и химические свойства. Водородные соединения азота: аммиак, соли аммония.
- 36. Гидразин, гидроксиламин, азотистоводородная кислота, азиды.
- 37. Фосфор, получение, физические и химические свойства. Водородные соединения фосфора, получение, физические и химические свойства.
- 38. Кислородные соединения фосфора +3.
- 39. Кислородные соединения фосфора +5.
- 40. Подгруппа мышьяка, получение, физические и химические свойства простых веществ. Водородные соединения, получение, физические и химические свойства.
- 41. Кислородные соединения элементов подгруппы мышьяка в степени окисления +3 и +5, получение, физические и химические свойства. Тиосоли, тиокислоты.
- 42. Углерод, аллотропические модификации, физические и химические свойства. Карбиды.
- 43. Кислородные соединения углерода в степени окисления +2 и +4.
- 44. Кремний, получение, физические и химические свойства. Соединения кремния с водородом и кислородом.
- 45. Подгруппа германия. Простые вещества, получение, физические и химические свойства. Соединения германия.
- 46. Соединения олова в степени окисления +2 и +4, получение, физические и химические свойства.
- 47. Соединения свинца в степени окисления +2 и +4, получение, физические и химические свойства.
- 48. Бор. Получение, физические и химические свойства. Бороводороды. Кислородные соединения бора. Соединения бора с водородом и азотом.
- 49. Алюминий, получение, физические и химические свойства. Соединения алюминия с водородом, кислородом, галогенами, азотом.
- 50. Подгруппа галлия, получение, физические и химические свойства простых веществ. Соединения элементов подгруппы галлия.

- 51. Бериллий, получение, физические и химические свойства. Соединения бериллия.
- 52. Магний, получение, физические и химические свойства. Соединения магния.
- 53. Подгруппа кальция, получение, физические и химические свойства, соединения электролитов подгруппы кальция.
- 54. Характеристика подгруппы щелочных металлов. Простые соединения. Соединения щелочных металлов.
- 55. Медь, получение, физические и химические свойства. Соединения меди в степени окисления +1, +2, +3.
- 56. Серебро, получение, физические и химические свойства. Соединения серебра в степени окисления +1, +2.
- 57. Золото, получение, физические и химические свойства. Соединения золота в степени окисления +1 и +3.
- 58. Цинк, получение, физические и химические свойства. Соединения цинка. Соединения кадмия.
- 59. Ртуть, получение, физические и химические свойства. Соединения ртути в степени окисления +1, +2.
- 60. Хром, получение, физические и химические свойства. Соединения хрома в степениокисления +2, +3, +6.
- 61. Марганец, получение, физические и химические свойства. Соединения марганца в степени окисления +2, +3, +4.
- 62. Соединения марганца в степени окисления +6, +7. Технеций и рений, получение, физические и химические свойства. Соединения технеция и рения.
- 63. Железо, получение, физические и химические свойства. Соединения железа в степени окисления +2, +3.
- 64. Кобальт и никель, получение, физические и химические свойства. Соединения кобальта и никеля в степени окисления +2 и +3.
- 65. Характеристика элементов платиновой группы, получение, физические и химические свойства. Соединения элементов платиновой группы.

Составитель: Т. Изука Т.В. Щука