Государственное образовательное, учреждение «Приднестровский Государственный Университет им. Т.Г. Шевченко»\

Физико-технический институт Физико-математический факультет Кафедра высшей и прикладной математики и информатики

УТВЕРЖДАЮ

Зав. кафедры-разработчика, к.ф.-м.н., доц.

Коровай А.В.

(подпись, расшифровка подписи)

протокол № 1 "_14 "_сентября 2023 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ по дисциплине

Б1.О.13 «ЭКОНОМЕТРИКА»

Направление подготовки: **38.03.01 – Экономика**

Профиль

Бухгалтерский учет, анализ и аудит, Мировая экономика и международный бизнес, Финансы и кредит, Корпоративные финансы и бизнес аналитика, Экономика и менеджмент

Квалификация **Бакалавр**

Форма обучения **Очная**

ГОД НАБОРА 2021г.

Разработчик: канд. соц. наук, доцент

_/Леонова Н.Г.

"<u>14</u>" <u>сентября</u> 2023 г.

Тирасполь 2023 г.

Паспорт фонда оценочных средств по дисциплине «ЭКОНОМЕТРИКА»

В результате изучения дисциплины «Эконометрика» у обучающихся должны быть

сформированы следующие компетенции:

Категория	Код и наименование	Код и наименование индикатора достижения			
компетенций		компетенции			
Унг	иверсальные компетенции в	выпускников и индикаторы их достижения			
Системное и	УК-1 Способен	ИД ук1.1. Знает принципы сбора, отбора и			
критическое	осуществлять поиск,	обобщения информации, методики системного			
мышление	критический анализ и	подхода для решения профессиональных задач.			
	синтез информации,	ИД ук-1.2. Умеет анализировать и систематизировать			
	применять системный	разнородные данные, оценивать эффективность			
	подход для решения	процедур анализа проблем принятия решений в			
	поставленных задач	профессиональной деятельности.			
		ИД ук-1.3. Владеет навыками научного поиска и			
		практической работы с информационными			
		источниками; методами принятия решений;			
		методикой системного подхода для решения			
		поставленных задач.			

2. Программа оценивания контролируемой компетенции					
Текущая	Контролируемые модули, разделы	Код контролируемой	Наименование		
аттестация	дисциплины и их наименование	компетенции	оценочного средства		
1 Раздел 2. Парный регрессионный анализ.		УК-1	Контрольная работа №1		
2	Раздел 3. Множественный регрессионный анализ	УК-1	Контрольная работа №2		
3	Раздел 1. Модели эконометрики. Типы данных. Случайные переменные и теория выборок. Ковариация, дисперсия и корреляция. Раздел 2. Парный регрессионный анализ. Раздел 3. Множественный регрессионный анализ	УК-1	Комплект заданий для выполнения домашних работ		
4	Раздел 1. Модели эконометрики. Типы данных. Случайные переменные и теория выборок. Ковариация, дисперсия и корреляция. Раздел 2. Парный регрессионный анализ. Раздел 3. Множественный регрессионный анализ	УК-1	Комплект заданий для выполнения лабораторных работ		
	Промежуточная аттестация	Код контролируемой компетенции	Наименование оценочного средства**		
	Зачёт	УК-1	Вопросы к зачёту. Тесты к зачёту		

Контрольная работа №1

Зависимость урожайности (т/га) от внесения удобрений (ц) приведена в таблице 1:

Таблица 1.

								т иолица т
х	1	2	3	4	5	6	7	8
у	2+N	5,65+N	10,4+N	16+N	22,4+N	29+N	37+N	45,2+N

Построить диаграмму рассеяния, обосновать выбор уравнения регрессии, построить уравнение и оценить статистическую значимость уравнения и коэффициентов регрессии и корреляции. Осуществить прогноз для $x_{\rm np} = 1.1 \cdot x$, где N – номер варианта.

Контрольная работа №2

В таблице 2 дана информация о динамике потребления овощей за 5 лет и факторов, оказывающих влияние на объём потребления, индекс цен и среднемесячный доход. Сформировать свой вариант исходных данных по данным таблицы, используя формулы:

$$D = D + 0.1 N;$$

 $J = J + 0.1 N;$
 $P = P + 0.1 N,$

где N — номер варианта. Требуется:

- Найти зависимость среднедушевого потребления от размера дохода и индекса цен.
- Найти парные коэффициенты корреляции.
- Найти линейные коэффициенты частной корреляции и линейный коэффициент множественной корреляции.
- Оценить статистическую значимость уравнений и их параметров с помощью критериев Фишера и Стьюдента.

Таблица 2.

Номер года	Среднемесячный доход на душу населения (тыс. руб.): $D = x_1$	Индекс цен в % $J = x_2$	Среднедушевое потребление овощей в месяц (кг): $P = y$
1	2	1	15,3
2	1,5	2	10
3	2,2	3	13,1
4	2,7	4	18
5	3,2	5	21

Критерии оценки:

- Оценка «отлично» выставляется студенту, если он выполнил и оформил правильно все задания контрольной работы.
- Оценка «хорошо» выставляется студенту, если он правильно выполнил расчёты во всех заданиях, но допустил неточности в оформлении и в смысловом токовании заданий.
- Оценка «удовлетворительно» выставляется студенту, если он правильно выполнил и оформил 50% заданий, допустил ошибки и неточности в промежуточных расчётах, в оформлении и в смысловом толковании задания.
- Оценка «неудовлетворительно» выставляется студенту, если он правильно выполнил основные расчёты менее 50% заданий, допустил ошибки и неточности в промежуточных расчётах, в оформлении и в смысловом толковании задания или если он не справился с решением предложенных заданий.

Комплект заданий для выполнения домашних работ по дисциплине «Эконометрика»

Задание 1.

В некоторой стране доход y специалиста зависит от возраста x, лет обучения s и трудового стажа t. Исследовать зависимость между переменными, найти Cov(x, y); Cov(s, y); Cov(t, y); r_{yx} ; r_{yx} ; r_{yy} . Дать сравнительный анализ результатов. По данным приведенным в таблице 3 сформировать свой вариант исходных данных, используя формулы x = x' + 0.1N; y = y' + 0.01N.

Таблица 3.

Специалист	Возраст	Годы обучения	Трудовой стаж	Доход
	X	S	t	y
1	18	11	1	152
2	25	14	5	208
3	29	16	7	182
4	33	20	11	213
5	35	20	10	305
6	40	12	5	201
7	45	16	20	309
8	50	11	30	252
9	55	14	36	253
10	60	20	40	305

Задание 2.

По территориям региона приводятся данные за 202X г. (таблица 4). Требуется:

- 1. Построить модель парной регрессии y от x:а) линейную; б) степенную; в) показательную; г) гиперболическую; д) параболическую.
- 2. Рассчитать индекс парной корреляции (для линейной модели коэффициент корреляции), коэффициент детерминации и среднюю ошибку аппроксимации.
- 3. Оценить каждую модель, применив критерий Фишера.
- 4. Рассчитать прогнозное значение результата, если прогнозное значение фактора увеличится на 20% от его среднего уровня.
- 5. Составить сводную таблицу результатов вычислений, выбрать лучшую модель, дать интерпретацию рассчитанных характеристик.
- 6. Результаты расчетов отобразить на графиках.

Таблица 4.

Номе р район а	Средняя заработная плата и выплаты социального характера, тыс. руб., у	Прожиточный минимум в среднем на душу населения, тыс. руб., х
1	615 + N	289 + 0.5N
2	757 + N	338 + 0.5N
3	584 + N	277 + 0.5N
4	753 + N	324 + 0.5N
5	707 + N	307 + 0.5N
6	657 + N	304 + 0.5N
7	654 + N	307 + 0.5N
8	693 + N	290 + 0.5N
9	704 + N	314 + 0.5N
10	740 + N	304 + 0.5N
11	830 + N	341 + 0.5N

Задание 3.

В таблице 5 дана информация о динамике потребления овощей за 5 лет и факторов, оказывающих влияние на объём потребления, индекс цен и среднемесячный доход.

Таблица 5.

Номер года	Среднемесячный доход на душу	Индекс цен в %	Среднедушевое потребление
	населения (тыс. руб.): $D = x_1'$	$J = x'_2$	овощей в месяц (кг): $P = y'$
1	1	0,1	16,5
2	1,5	0,2	15
3	2,2	0,4	14
4	2,5	0,3	13
5	2,9	0,35	12

Требуется:

- Сформировать свой вариант исходных данных по данным таблицы 1., используя формулы :

$$y = y' + 0.1N$$
;
 $x_1 = x_1' + 0.1N$;
 $x_2 = x_2' + 0.1N$.

- Построить эконометрическую модель, уравнение множественной регрессии $y = a_1 x_1 + a_2 x_2 + b$ зависимости среднедушевого потребления овощей от размера дохода и индекса цен.
- Найти линейные коэффициенты множественной корреляции и детерминации, среднюю ошибку аппроксимации.
- Оценить статистическую значимость уравнения с помощью критерия Фишера.
- Осуществить прогноз для $x_{_{1np}}=1,1x_{_{1cp}}$, $x_{_{2np}}=0,9x_{_{2cp}}$.

Задание 4.

По данным, приведенным в таблице 6, построить производственную функцию типа Кобба-Дугласа:

$$y = A \cdot x_1^{\alpha} \cdot x_2^{\beta}$$
, где $0 < \alpha < 1$, $0 < \beta < 1$,

зависимости объема производства продукции у от затрат объёмов ресурсов 1-го и 2-го видов x_1 и x_2 .

Требуется:

- 1. найти вид уравнения в логарифмической и естественной форме, дать интерпретацию параметров уравнения регрессии, считая, что y объем выпускаемой продукции, а x_1 и x_2 затраты ресурсов 1-го и 2-го видов;
- 2. найти коэффициенты парной корреляции;
- 3. найти индекс множественной корреляции и коэффициент детерминации;
- 4. оценить уравнение регрессии с помощью критерия Фишера;
- 5. найти среднюю ошибку аппроксимации;
- 6. дать экономическую интерпретацию уравнения.

	71	Таблица 6.		
$N_{\underline{0}}$	у	x_1	x_2	
1	75,3	27,81	43,3	
2	78,3	29,61	44,3	
3	81,3	33,4	45,3	
4	84,3	35,45	47,3	
5	88,3	32,45	44,3	
6	92,3	36,45	48,3	
7	96,5	37,45	49,3	
8	97,8	40,45	47,3	
9	100,2	39,5	49,7	
10	103,3	40,2	50,2	

Комплект заданий для выполнения лабораторных работ Лабораторная работа №1

Построить эконометрическую модель зависимости прожиточного минимума от заработной платы. Требуется:

- 7. сформировать свой вариант исходных данных по данным таблицы 7, где N номер варианта;
- 8. построить диаграмму рассеяния и модель прожиточного минимума, уравнения парной регрессии y = ax + b от факторов указанных в заданиях;
- 9. рассчитать коэффициенты корреляции, детерминации и среднюю ошибку аппроксимации;
- 10. оценить модель, с помощью критериев Фишера и Стьюдента;
- 11. рассчитать на 2021 г. прогнозные значения зависимого фактора, если прогнозное значение независимого фактора увеличится на 20% от его среднего уровня. Найти ошибку и доверительные интервалы прогноза;
- 12. результаты расчетов отобразить на графике, записать смысловой ответ.

Таблица 7.

N	Год	Среднемесячный прожиточный	Среднемесячная номинальная начисленная	
		минимум, руб.	заработная плата работников, руб.	
1	2004	340+N	706+N	
2	2005	396,59+N	1013+N	
3	2006	447,6+N	1258+N	
4	2007	555,86+N	1625+N	
5	2008	811,64+N	2086+N	
6	2009	806,55+N	2139+N	
7	2010	926,84+N	2640+N	
8	2011	1111,21+N	2973+N	
9	2012	1161,57+N	2803+N	
10	2013	1230,17+N	2840+N	
11	2014	1330,38+N	3118 +N	
12	2015	1314+N	3864+N	
13	2016	1472,5+N	3769+N	
14	2017	1411+N	3901+N	
15	2018	1462+N	4256+N	
16	2019	1526+N	4607+N	
17	2020	1533+N	4802+N	

Лабораторная работа №2

Построить эконометрическую модель зависимости прожиточного минимума от заработной платы: $y = ax^k$; $y = ka^x$; $y = a(x-c)^2 + b$. В задании требуется:

- 1. сформировать свой вариант исходных данных по данным таблицы 7, где N номер варианта;
- 2. построить диаграмму рассеяния и нелинейную модель парной регрессии (вид модели указан в серии варианта):
- 3. рассчитать индексы корреляции, детерминации и среднюю ошибку аппроксимации;
- 4. оценить модель, с помощью критерия Фишера;
- 5. рассчитать на 2021 г. прогнозные значения зависимого фактора, если прогнозное значение независимого фактора увеличится на 20% от его среднего уровня.
- 6. сравнить качество моделей построенных в лабораторных работах 1 и 2 и выбрать наилучшую из них;
- 7. результаты расчетов отобразить на графике, записать смысловой ответ.

Лабораторная работа №3

В таблице 8 дана информация о динамике потребления овощей за 10 лет и факторов, оказывающих влияние на объём потребления, индекс цен и среднемесячный доход.

Сформировать свой вариант исходных данных по данным таблицы, используя формулы:

$$D_{t}^{'} = D_{t} + N;$$

 $J_{t}^{'} = J_{t} - 0.1N;$
 $P_{t}^{'} = P_{t} + 1.5N,$

где N — номер варианта. Требуется:

- Найти зависимость среднедушевого потребления от размера дохода и индекса цен. Построить эконометрическую модель, уравнение множественной регрессии $y = a_1 x_1 + a_2 x_3 + b$
- Построить матрицу парных коэффициентов корреляции.
- Найти линейные коэффициенты частной корреляции и линейный коэффициент множественной корреляции.
- Построить трендовую модель роста среднемесячного дохода.
- Построить трендовую модель изменения цен.
- Для трендовых моделей найдите коэффициенты автокорреляции первого порядка и дайте их интерпретацию.
- Оценить статистическую значимость уравнений и их параметров с помощью критериев Фишера и Стьюдента.
- Используя построенные трендовые модели для дохода и индекса цен, осуществить прогноз спроса на овощи на следующие 2 года (11 и 12).
- Рассчитать коэффициенты эластичности спроса на овощи в зависимости от дохода и уровня цен для 11 года.
- Построить графики трендовых моделей.

Таблица 8.

Номер года, t	Среднемесячный доход	Индекс цен в %	Среднедушевое
1	на душу населения	$\mathbf{J_t}$	потребление овощей в
	(руб.): D _t	-	месяц (кг): P _t
1	15,0	123	70
2	17,4	135	73
3	21,0	150	68
4	23,6	162	73
5	17,6	179	75
6	32,1	188	77
7	34,7	200	74
8	42,5	207	76
9	41,2	214	80
10	44,7	219	86

Лабораторная работа №4

По данным, приведенным в таблице 9, построить производственную функцию Кобба-Дугласа

$$y = A \cdot x_1^{\alpha} \cdot x_2^{\beta}$$

- Найти вид уравнения в логарифмической и естественной форме, дать интерпретацию параметров уравнения регрессии.
- Оценить значимость параметров регрессии с помощью t-критерия Стьюдента.
- Найти индекс множественной корреляции.
- Оцените значимость уравнения регрессии в целом с помощью F-критерия Фишера.
- Сформировать свой вариант исходных данных по данным таблицы, используя формулы:

y' = y + 0.1N;	
$\mathbf{x}_{1} = \mathbf{x}_{1} + 0.1\mathbf{N};$	
$x_{2} = x_{2} + 0.1N$.	

Таблина 9.

			гаолица Э.
No	У	\mathbf{x}_1	\mathbf{x}_2
1	75.1	27.61	43.1
2	78.1	29.41	44.1
3	81.1	33.20	45.1
4	84.1	35.25	47.1
5	88.1	32.25	44.1
6	92.1	36.25	48.1
7	96.3	37.25	49.1
8	97.6	40.25	47.1
9	100.0	39.30	49.5
10	103.1	40.00	50.00

Тесты к зачету по дисциплине «Эконометрика»

1. Математическое ожидание E(x) это:

$$1) \sum_{i=1}^{n} x_{i} p_{i};$$

1)
$$\sum_{i=1}^{n} x_{i} p_{i}$$
; 2) $\frac{1}{n} \sum_{i=1}^{n} x_{i}$; 3) $\sum_{i=1}^{n} x_{i}$;

$$3) \sum_{i=1}^{n} x_{i}$$

$$4) \max_{i=1,n} x_i$$

2. Теоретическая ковариация $\ pop\ .\ cov(\ x,\,y) = \sigma_{_{xy}}\$ вычисляется по формуле:

1)
$$\frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i} p_{i}$$
; 2) $\frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i}$; 3) $E((x - \overline{x})(y - \overline{y}))$; 4) $E((x - E(x))(y - E(y)))$.

$$2) \frac{1}{n} \sum_{i=1}^{n} x_i y_i$$

3)
$$E\left(\left(x-\overline{x}\right)\left(y-\overline{y}\right)\right)$$

4)
$$E((x - E(x))(y - E(y)))$$

3. Несмещенной оценкой σ_x^2 является:

1)
$$\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$
; 2) $\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$;

2)
$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

3)
$$\sum_{i=1}^{n} (x_i - \overline{x})^2$$
;

4)
$$\max_{i=1,n} (x_i - \overline{x})^2$$
.

4. Несмещенной оценкой σ_{xy} является:

1)
$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

1)
$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y});$$
 2) $\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y});$

3)
$$\max_{i=1}^{l=1} (x_i - \overline{x})(y_i - \overline{y});$$
 4) $\min_{i=1}^{l=1} (x_i - \overline{x})(y_i - \overline{y}).$

4)
$$\min_{i=1,n} \left(x_i - \overline{x} \right) \left(y_i - \overline{y} \right).$$

5. Для уравнения регрессии $y = 0.052 \ x + 1.3$, где x – среднемесячный доход на душу населения (тыс.руб.); y – среднедушевой прожиточный минимум (тыс.руб.), тогда с увеличением дохода на 1 тыс.руб. среднедушевой прожиточный минимум:

1) возрастет на 52 руб.;

2) возрастет на 520 руб.;

- 3) возрастет на 5,2 тыс. руб.; 4) уменьшается на 52 руб.
- 6. Коэффициент корреляции r_{xy} показывает:
 - 1) тесноту связи между x и y;
 - 2) максимальное значение y;
 - 3) разность значений (x y);
 - 4) сумму значений (x y).

7. Для факторов x и y, где x – производительность труда; y – себестоимость продукции коэффициент детерминации $R^2 = 0.75$, тогда

- 1) себестоимость продукции y на 5,7 больше производительности труда x;
- 2) производительность труда x на 5,7 больше себестоимости продукции y;

- 3) себестоимость продукции у возрастает на 7,5%;
- 4) 75% дисперсии себестоимости продукции y объясняется дисперсией производительности труда x.
- 8. Параметры уравнения y = ax + b находятся по формулам:

1)
$$a = \frac{\text{var}(x)}{\text{Cov}(x, y)}$$
; $b = y + ax$; 2) $a = \frac{\text{Cov}(x, y)}{\text{var}(y)}$; $b = y + ax$;

2)
$$a = \frac{Cov(x, y)}{var(y)}$$
; $b = y + ax$;

3)
$$a = \frac{Cov(x, y)}{var(y)}$$
; $b = \frac{-}{y} - ax$; 4) $a = \frac{\sum_{i=1}^{n} x_i y_i}{n}$; $b = y + ax$.

4)
$$a = \frac{\sum_{i=1}^{n} x_{i} y_{i}}{n}$$
; $b = y + ax$.

9. Ошибка m_{rxy} находится по формуле:

1)
$$m_{rxy} = \frac{R^2}{n-2}$$
; 2) $m_{rxy} = \sqrt{\frac{1-r_{xy}^2}{n}}$; 3) $m_{rxy} = \sqrt{\frac{r_{xy}^2-1}{n-2}}$; 4) $m_{rxy} = \sqrt{\frac{1-r_{xy}^2}{n-2}}$.

- 10. Если справедлива гипотеза H_0 : a=0 относительно коэффициента a модели парной регрессии, то переменная х является:
 - 1) значимой;
 - 2) незначимой;
 - 3) необходимой;
 - 4) желательной.
- 11. Средняя ошибка аппроксимации \overline{A} находится по формуле:

1)
$$\frac{1}{n-2} \sum_{i=1}^{n} (y_i - y_{ip})^2 \cdot 100 \% ;$$
 2) $\frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - y_{ip}}{y_i} \right| \cdot 100 \% ;$

2)
$$\frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - y_{ip}}{y_i} \right| \cdot 100 \%$$
;

3)
$$\frac{1}{n} \sum_{i=1}^{n} \frac{y_i - y_{ip}}{y_i} \cdot 100 \%$$
;

3)
$$\frac{1}{n} \sum_{i=1}^{n} \frac{y_i - y_{ip}}{y_i} \cdot 100 \%$$
; 4) $\frac{1}{n-2} \sum_{i=1}^{n} \frac{y_i - y_{ip}}{y_i} \cdot 100 \%$.

- 12. Средняя ошибка аппроксимации $\overline{A} = 0.5\%$,тогда точность модели:
- хорошая;
- 2) неудовлетворительная;
- 3) положительная;
- 4) отрицательная.
- 13. Какой метод применяется для решения системы нормальных уравнений при определении параметров a_1 , a_2 , b в уравнении $y = a_1 x_1 + a_2 x_2 + b$:
 - 1) метод неопределенных коэффициентов;
 - 2) метод Лагранжа;
 - 3) метод Крамера;
 - 4) метод Эйлера.
- 14. Уравнение регрессии имеет вид: P = 2.5D + 0.1I + 0.8,

где D – доход (тыс. руб.); I – индекс цен (в %); P – потребление овощей, тогда если доход возрастет на 1 тыс. руб., а индекс цен не изменится, то потребление овощей:

- 1) уменьшится на 2,5 кг.;
- 2) возрастет на 3,3 кг.;
- 3) уменьшится на 3,3 кг.;
- 4) возрастет на 2,5 кг.
- 15. Первое условие Гаусса-Маркова имеет вид:

1)
$$E(u_i) = b$$
; 2) $E(u_i) = 0$; 3) $E(u_i) = a$; 4) $E(u_i) = Cov(x, y)$.

4)
$$E(u_i) = Cov(x, y)$$

- 16. Коэффициент частной корреляции $r_{yx,\bullet x_2}$ измеряет:
- 1) значимость переменой у;
- 2) значимость переменой x_1 ;
- 3) тесноту связи между у и x_1 при постоянном значении x_2 ;

- 4) тесноту связи между x_1 и x_2 .
- 17. Коэффициенты: $r_{yx_2, \bullet x_1} = 0,3$, это означает, что:
- 1) при постоянном значении x_1 связь между у и x_2 слабая;
- 2) при постоянном значении х₁ связь между у и х₂ тесная;
- 3) при постоянном значении х₁ связь между у и х₂ отсутствует;
- 4) при постоянном значении x_1 связь между у и x_2 отрицательная.
- 18. Фактическое значение частного F-критерия превышает табличное значение: $F_{x_i} > F_{\text{табл.}}$ тогда коэффициент чистой регрессии a_i при факторе x_i :
- 1) статистические значим;
- 2) статистически незначим;
- 3) положительный;
- 4) отрицательный.
- 19. Пусть уравнение множественной регрессии описывает зависимость объема продукции y от затрат труда x_1 и технической оснащенности x_2 и имеет вид:

$$y = 2.8 x_1 + 0.2 x_2 + 20.2 + \varepsilon$$

Фактическое значение $F_{x_1} = 9,4$; табличное значение $F_{\text{табл.}} = 4,21$. Тогда:

- 1) включение в модель фактора x_1 после x_2 статистически оправдано;
- 2) включение в модель фактора x_2 после x_1 статистически оправдано;
- 3) включение в модель фактора x_1 после x_2 статистически не оправдано;
- 4) включать в модель следует x_1 и x_2 .
- 20. Система уравнений

$$\begin{cases} y_1 = a_{01} + a_{11} x_1 + a_{12} x_2 + a_{13} x_3 + a_{14} x_4 + \varepsilon_1, \\ y_2 = a_{02} + a_{21} x_1 + a_{22} x_2 + a_{23} x_3 + a_{24} x_4 + \varepsilon_2, \\ y_3 = a_{03} + a_{31} x_1 + a_{32} x_2 + a_{33} x_3 + a_{34} x_4 + \varepsilon_3. \end{cases}$$

является:

- 1) системой независимых уравнений;
- 2) системой взаимозависимых уравнений;
- 3) системой рекурсивных уравнений;
- 4) системой нормальных уравнений.
- 21. Укажите число структурных коэффициентов модели:

$$\begin{cases} y_1 = b_{12} y_2 + a_{11} x_1 + a_{12} x_2, \\ y_2 = b_{21} y_1 + a_{22} x_2 + a_{23} x_3. \\ 1) 6; \quad 2) 7; \quad 3) 5; \quad 4) 4; \end{cases}$$

- 22. Необходимое условие идентифицируемости уравнения имеет вид:
- 1) D + 1 < H; 2) D 1 = H; 3) D + 1 > H; 4) D + 1 = H.
- 23. Укажите в системе уравнений

$$\begin{cases} y_1 = b_{12} y_2 + b_{13} y_3 + a_{11} x_1 + a_{12} x_2 \\ y_2 = b_{21} y_1 + a_{22} x_2 + a_{23} x_3 + a_{24} x_4 \\ y_3 = b_{31} y_1 + b_{32} y_2 + a_{31} x_1 + a_{32} x_2 \end{cases}$$

идентифицируемые уравнения:

- 1) 1 и 2; 2) 1 и 3; 3) 2; 4) 1.
- 24. Коэффициент автокорреляции уровней ряда 1-го порядка вычисляется по формуле:

1)
$$r_{1} = \frac{\sum_{t=2}^{n} (y_{t} - \overline{y}_{1})(y_{t-1} - \overline{y}_{2})}{\sqrt{\sum_{t=2}^{n} (y_{t} - \overline{y}_{1})^{2} \cdot \sum_{t=2}^{n} (y_{t-1} - \overline{y}_{2})^{2}}}; 2) r_{1} = \frac{\sum_{t=2}^{n} (y_{t} - \overline{y}_{1})}{\sqrt{\sum_{t=2}^{n} (y_{t} - \overline{y}_{1})^{2} \cdot \sum_{t=2}^{n} (y_{t-1} - \overline{y}_{2})^{2}}}; 3) r_{1} = \frac{\sum_{t=2}^{n} (y_{t} - \overline{y}_{1})^{2} \cdot \sum_{t=2}^{n} (y_{t-1} - \overline{y}_{2})^{2}}{\sqrt{\sum_{t=2}^{n} (y_{t} - \overline{y}_{1})^{2} \cdot \sum_{t=2}^{n} (y_{t-1} - \overline{y}_{2})}}; 4) r_{1} = \frac{\sum_{t=2}^{n} (y_{t} - \overline{y}_{1}) - (y_{t-1} - \overline{y}_{2})}{\sqrt{\sum_{t=2}^{n} (y_{t} - \overline{y}_{1})^{2} \cdot \sum_{t=2}^{n} (y_{t-1} - \overline{y}_{2})^{2}}}.$$

- 25. Коэффициент автокорреляции 2-го порядка $r_2 \approx 0.98$, y_t расходы на потребление в текущем году, тогла:
- 1) Существует нелинейная зависимость между расходами на конечное потребление текущего уровня y_t и уровня y_{t-2} .
- 2) Связи между уровнями y_t и y_{t-2} не существует.
- 3) Существует слабая зависимость между расходами на конечное потребление текущего уровня y_t и уровня y_{t-2} .
- 4) Существует тесная зависимость между расходами на конечное потребление текущего уровня y_t и уровня y_{t-2} .

Критерии оценки:

- «зачтено» выставляется студенту, если он правильно решил 60% тестовых заданий;
- «не зачтено» выставляется студенту, если он решил менее 60% тестовых заданий.