Государственное образовательное учреждение «Приднестровский государственный университет им. Т.Г. Шевченко»

Физико-технический институт

Физико-математический факультет

Кафедра высшей и прикладной математики и информатики

УТВЕРЖДАЮ

Зав. кафедры-разработчика, к.ф.-м.н., доц.

(подпись, расшифровка подписи)

протокол № 1 "_30 у августа 2024 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

Б1.О.09 ЭКОНОМЕТРИКА

Направление 01.04.02 – Прикладная математика и информатика

Профиль **Математические и информационные технологии**

> Квалификация **Магистр**

Форма обучения **Очная**

ГОД НАБОРА 2024

Разработал: канд. соц. наук, доцент

/Леонова Н.Г.

Коровай А.В.

"<u>30</u>" <u>августа</u> 2024 г.

Паспорт фонда оценочных средств по учебной дисциплине «Эконометрика»

1. В результате изучения дисциплины «Эконометрика» у обучающихся должны быть сформированы следующие компетенции:

Категория	Код и наименование	Код и наименование индикатора достижения					
компетенций	, ,	компетенции					
Общепрофессион	Общепрофессиональные компетенции и индикаторы их достижения						
	ОПК-1 Способен решать	ИД ОПК-1.1 Знать основные принципы и методы					
	актуальные задачи	доказательства теорем и разработки алгоритмов					
	фундаментальной и	ИД ОПК-1.2 Умеет ставить новые задачи в области					
	прикладной математики	прикладной математики информатики и					
		находить пути их решения, формулировать и					
		доказывать теоремы, а также разрабатывать алгоритмы для написания компьютерных					
		программ					
		ИД опк-1.3 Владеет различными методами,					
		применяемыми при исследовании в области					
		прикладной математики и информатики, в том					
		числе владеть умением формулировать и					
		доказывать теоремы, а также разрабатывать					
		алгоритмы и писать программы по данным					
T.	ОПК-2 Способен	алгоритмам					
Теоретические и	совершенствовать и	ИД опк-2.1 Использует результаты прикладной					
практические основы	реализовывать новые	математики для освоения, адаптации новых					
профессио-	математические методы	методов решения задач в области своих					
нальной	решения прикладных задач	профессиональных интересов					
деятельности		ИД опк-2.2 Умеет теоретически и практически					
		разрабатывать математические методы решения					
		прикладных задач					
		ИД опк-2.3 Владеет умениями и навыками					
		исследования математическими методами					
	ОПК-3 Способен	решения прикладных задач ИД _{ОПК-3.1} Формулирует цели моделирования					
	разрабатывать	при решении прикладных задач					
	математические модели и	профессиональной деятельности					
	проводить их анализ при	ИД опк-3.2 Умеет разрабатывать и строить					
	решении задач в области	математические модели и проводить их					
	профессиональной	исследование методами прикладной математики					
	деятельности	и информатики					
		ИД _{ОПК-3.3} Анализирует математические модели при решении прикладных задач					
		при решении прикладных задач профессионально деятельности					
Обязательные пр	рофессиональные компетенции <i>п</i>						
	ПК-1. Способен проводить	ИД ПК-1.13нает классические методы,					
	научные исследования и	применяемые в прикладной математике и					
	получать новые научные и	информатике; необходимые и достаточные					
	прикладные результаты	условия их реализации.					

	тельно и в составе коллектива	ИД ПК-1.2 Умеет самостоятельно выбирать эффективные методы решения поставленных задач и разрабатывать новые методы для получения новых научных и прикладных результатов
* *	ывать и применять	ИД ПК-1.3 Владеет наукоемкими технологиями и пакетами прикладных программ для решения прикладных задач ИД ПК-2.1 Знает языки программирования, библиотеки и пакеты программ
1 1 1	е и прикладное иное обеспечение для задач научной и ической	ИД ПК-2.2 Умеет выбирать оптимальные системы программирования, наиболее подходящие для решения поставленной задачи ИД ПК-2.3 Владеет методами моделирования информационных процессов

2. Программа оценивания контролируемой компетенции

Текущая	Контролируемые модули, разделы	Код	Наименование
аттестация	(темы) дисциплины и их наименование	контролируемой	оценочного средства
№ контрол.		компетенции	
модуля			
1	Раздел 2. Парный регрессионный анализ.	ОПК-1, ОПК-2,	Комплект заданий для
	Раздел 3. Множественный регрессионный	ОПК-3,	выполнения
	анализ.	ПК-1, ПК-2	лабораторных работ
Промежуточн	ая аттестация	Код контроли-	Наименование
		руемой	оценочного
		компетенции	средства**
	Зачёт с оценкой	ОПК-1, ОПК-2,	Вопросы к зачёту с
		ОПК-3,	оценкой, комплект
		ПК-1, ПК-2	задач к зачёту с
			оценкой

Государственное образовательное учреждение «Приднестровский государственный университет им. Т.Г. Шевченко»

Физико-технический институт Физико-математический факультет Кафедра высшей и прикладной математики и информатики

Комплект заданий для выполнения лабораторных работ Лабораторная работа №1

Построить эконометрическую модель зависимости прожиточного минимума от заработной платы. Требуется:

- 1. сформировать свой вариант исходных данных по данным таблицы 1, где N номер варианта;
- 2. построить диаграмму рассеяния и модель прожиточного минимума, уравнения парной регрессии y = ax + b от факторов указанных в заданиях;
- 3. рассчитать коэффициенты корреляции, детерминации и среднюю ошибку аппроксимации;
- 4. оценить модель, с помощью критериев Фишера и Стьюдента;
- 5. рассчитать на 2021 г. прогнозные значения зависимого фактора, если прогнозное значение независимого фактора увеличится на 20% от его среднего уровня. Найти ошибку и доверительные интервалы прогноза;
- 6. результаты расчетов отобразить на графике, записать смысловой ответ.

N	Год	Среднемесячный прожиточный	Среднемесячная номинальная начисленная
		минимум, руб.	заработная плата работников, руб.
1	2004	340+N	706+N
2	2005	396,59+N	1013+N
3	2006	447,6+N	1258+N
4	2007	555,86+N	1625+N
5	2008	811,64+N	2086+N
6	2009	806,55+N	2139+N
7	2010	926,84+N	2640+N
8	2011	1111,21+N	2973+N
9	2012	1161,57+N	2803+N
10	2013	1230,17+N	2840+N
11	2014	1330,38+N	3118 +N
12	2015	1314+N	3864+N
13	2016	1472,5+N	3769+N
14	2017	1411+N	3901+N
15	2018	1462+N	4256+N
16	2019	1526+N	4607+N
17	2020	1533+N	4802+N

Лабораторная работа №2

Построить эконометрическую модель зависимости прожиточного минимума от заработной платы: $y = ax^k$

; $y = ka^x$; $y = a(x-c)^2 + b$. В задании требуется:

- 1. сформировать свой вариант исходных данных по данным таблицы 1, где N номер варианта;
- 2. построить диаграмму рассеяния и нелинейную модель парной регрессии (вид модели указан в серии варианта);
- 3. рассчитать индексы корреляции, детерминации и среднюю ошибку аппроксимации;
- 4. оценить модель, с помощью критерия Фишера;
- 5. рассчитать на 2021 г. прогнозные значения зависимого фактора, если прогнозное значение независимого фактора увеличится на 20% от его среднего уровня.
- 6. сравнить качество моделей построенных в лабораторных работах 1 и 2 и выбрать наилучшую из них;
- 7. результаты расчетов отобразить на графике, записать смысловой ответ.

Лабораторная работа №3

В таблице 2 дана информация о динамике потребления овощей за 10 лет и факторов, оказывающих влияние на объём потребления, индекс цен и среднемесячный доход.

Сформировать свой вариант исходных данных по данным таблицы, используя формулы:

$$D_{t}^{'} = D_{t} + N;$$

 $J_{t}^{'} = J_{t} - 0.1N;$
 $P_{t}^{'} = P_{t} + 1.5N,$

где N — номер варианта. Требуется:

- Найти зависимость среднедушевого потребления от размера дохода и индекса цен. Построить эконометрическую модель, уравнение множественной регрессии $y = a_1 x_1 + a_2 x_2 + b$
- Построить матрицу парных коэффициентов корреляции.
- Найти линейные коэффициенты частной корреляции и линейный коэффициент множественной корреляции.
- Построить трендовую модель роста среднемесячного дохода.
- Построить трендовую модель изменения цен.
- Для трендовых моделей найдите коэффициенты автокорреляции первого порядка и дайте их интерпретацию.
- Оценить статистическую значимость уравнений и их параметров с помощью критериев Фишера и Стьюдента.
- Используя построенные трендовые модели для дохода и индекса цен, осуществить прогноз спроса на овощи на следующие 2 года (11 и 12).
- Рассчитать коэффициенты эластичности спроса на овощи в зависимости от дохода и уровня цен для 11 года.
- Построить графики трендовых моделей.

Номер года, t	Среднемесячный доход	Индекс цен в %	Среднедушевое
	на душу населения	${f J_t}$	потребление овощей в
	(руб.): D _t		месяц (кг): Рt
1	15,0	123	70
2	17,4	135	73
3	21,0	150	68
4	23,6	162	73
5	17,6	179	75
6	32,1	188	77
7	34,7	200	74
8	42,5	207	76
9	41,2	214	80
10	44,7	219	86

Лабораторная работа №4

По данным, приведенным в таблице 3, построить производственную функцию Кобба-Дугласа

$$y = A \cdot x_1^{\alpha} \cdot x_2^{\beta}$$

- Найти вид уравнения в логарифмической и естественной форме, дать интерпретацию параметров уравнения регрессии.
- Оценить значимость параметров регрессии с помощью t-критерия Стьюдента.
- Найти индекс множественной корреляции.
- Оцените значимость уравнения регрессии в целом с помощью F-критерия Фишера.
- Сформировать свой вариант исходных данных по данным таблицы, используя формулы:

$$y = y + 0.1N;$$

 $x_1 = x_1 + 0.1N;$
 $x_2 = x_2 + 0.1N,$

			Габлица 3.
№	у	\mathbf{x}_1	X2
1	75.1	27.61	43.1
2	78.1	29.41	44.1
3	81.1	33.20	45.1
4	84.1	35.25	47.1
5	88.1	32.25	44.1
6	92.1	36.25	48.1
7	96.3	37.25	49.1
8	97.6	40.25	47.1
9	100.0	39.30	49.5
10	103.1	40.00	50.00

Критерии оценки:

- выполнение лабораторных работ (0-50 баллов).
- 50 баллов выставляется студенту, если он выполнил правильно и сдал в указанные сроки 100% заданий своего варианта;
- 35-49 баллов выставляется студенту, если он выполнил правильно и сдал в указанные сроки 75-99% заданий своего варианта;
- 20-34 баллов выставляется студенту, если он выполнил правильно и сдал в указанные сроки 50-74% заданий своего варианта;
- 12-19 баллов выставляется студенту, если он выполнил правильно и сдал в указанные сроки 25-49% заданий своего варианта;
- 1-11 баллов выставляется студенту, если он выполнил правильно и сдал в указанные сроки 5-24% заданий своего варианта;
- 0 баллов выставляется студенту, если он не выполнил и не сдал в указанные сроки задания своего варианта.

Вопросы к зачёту с оценкой по дисциплине «Эконометрика»

- 1. Введение, понятие о дисциплине. Модели. Основные моменты эконометрического моделирования.
- 2. Основные математические предпосылки эконометрического моделирования. Типы моделей. Типы данных.
- 3. Случайные переменные и теория выборок. Дискретная случайная величина (ДСП). Математическое ожидание E(x) ДСП. Теоретическая дисперсия Var(x) ДСП. Постоянная и случайная составляющие переменной.
- 4. Способы оценивания и оценки. Несмещенность и эффективность оценок.
- 5. Теоретическая и выборочная ковариация и дисперсия: pop. Cov(x,y); pop. Var(x); Cov(x,y); Var(x). Основные правила расчета.
- 6. Коэффициент корреляции теоретический $\rho_{x,y}$ и выборочный $r_{x,y}$
- 7. Метод наименьших квадратов (МНК), нахождение коэффициентов регрессии для линейной модели с двумя переменными. Качество оценки, коэффициент детерминации R^2 .
- 8. Случай нелинейной связи. Перенос системы координат. Различные виды аппроксимирующих функций. МНК для этих функций.
- 9. Случайные составляющие коэффициентов регрессии.
- 10. Модель $y = \alpha x + \beta + U$. Условия Гаусса-Маркова.
- 11. Несмещенность коэффициентов регрессии. Точность коэффициентов регрессии Теорема Гаусса-Маркова.
- 12. Проверка гипотез, относящихся к коэффициентам регрессии. Примеры.
- 13. Доверительные интервалы. Проверка статистических гипотез. Критерий Стьюдента и Фишера.
- 14. Модели множественной регрессии. Примеры. Линейные модели с 2-мя и с n независимыми переменными.
- 15. Вывод и интерпретация коэффициентов множественной регрессии. Свойства коэффициентов множественной регрессии (несмещенность, точность).
- 16. Индекс множественной корреляции.
- 17. Оценка надежности результатов множественной регрессии и корреляции.
- 18. Стандартные ошибки коэффициентов. *t* тесты и доверительные интервалы.
- 19. Спецификация модели, исключение существенных и включение несущественных переменных.
- 20. Проблема мультиколлинеарности и способы ее устранения
- 21. Предпосылки метода наименьших квадратов. Гетероскедастичность и автокореллированность случайного члена. Тесты Спирмена, Глейзера. Критерий Дарбина-Уотсона.
- 22. Нелинейные модели множественной регрессии. Модель типа Кобба-Дугласа.

Комплект задач к зачёту с оценкой по дисциплине «Эконометрика» Задание 1.

В некоторой стране доход y специалиста зависит от возраста x, лет обучения s и трудового стажа t. Исследовать зависимость между переменными, найти Cov(x, y); Cov(s, y); Cov(t, y); r_{yx} ; r_{ys} ; r_{yt} . Дать сравнительный анализ результатов. По данным приведенным в таблице 1 сформировать свой вариант исходных данных, используя формулы x = x' + 0.1N; y = y' + 0.01N.

Таблина 1.

	Возраст	Годы	Трудовой	Доход
	X	обучения	стаж	y
Специалист		S	t	
1	18	11	1	152
2	25	14	5	208
3	29	16	7	182
4	33	20	11	213
5	35	20	10	305
6	40	12	5	201
7	45	16	20	309
8	50	11	30	252
9	55	14	36	253
10	60	20	40	305

Задание 2.

В таблице 2 приведены данные по 10-ти торговым организациям, где указаны зависимость уровня рентабельности у от числа оборотов х. Сформировать свой вариант исходных данных, используя формулы: x = x' + 0.1N; y = y' + 0.01N,

Найти значения Cov(x.y). Var(x). Var(y), коэффициент корреляции r_{xy} .

Таблина 2.

		1 аолица 2.
торговые	Число оборотов	Уровень рентабельности
предприятия	x'	y ´
1	5,49	0,78
2	4,68	0,38
3	4,67	0,21
4	4,54	0,51
5	5,56	0,95
6	6,02	1,05
7	5,72	0,83
8	5,43	0,98
9	5,60	1,05
10	5,70	1,10

Задание 3.

По приведенным данным (табл.3) требуется:

- 1. Сформировать вариант исходных данных, используя формулу y = y' + N.
- 2. Построить линейную модель парной регрессии y = ax + b.
- 3. Рассчитать коэффициент корреляции и среднюю ошибку аппроксимации.
- 4. Оценить линейную модель, применив критерии Фишера и Стьюдента.
- 5. Рассчитать прогнозное значение результата, если прогнозное значение фактора x увеличится на 20% от его среднего уровня. С вероятностью 0,95, построить доверительные интервалы для значений a,b и для прогнозного значения результата $x_{\rm np} = 1,2 \cdot \bar{x}$..
 - 6. Результаты расчетов отобразить на графиках

Таблица 3.

X	1	2	3	4	5	6	7	8
<i>y</i> '	2+N	5,65+N	10,4+N	16+N	22,4+N	29+N	37+N	45,2+N

Задание 4.

По приведенным данным (табл.3) требуется:

- 1. Построить показательную модель парной регрессии $y = ka^x$ модель парной регрессии y от x:
- 2. Рассчитать индекс парной корреляции и среднюю ошибку аппроксимации.
- 3. Рассчитать прогнозное значение результата, если прогнозное значение фактора увеличится на 20% от его среднего уровня.
- 5. Составить сводную таблицу результатов вычислений в заданиях 1 и 2, выбрать лучшую модель, дать интерпретацию рассчитанных характеристик.
 - 6. Результаты расчетов отобразить на графиках.

Задание 5.

В таблице 4 дана информация о динамике потребления овощей за 5 лет и факторов, оказывающих влияние на объём потребления, индекс цен и среднемесячный доход.

Таблица 4.

Номер года	Среднемесячный доход на душу населения (тыс. руб.): $D = x_1'$	Индекс цен в % $J = x_2'$	Среднедушевое потребление овощей в месяц (кг): $P = y'$
1	1	0,1	16,5
2	1,5	0,2	15
3	2,2	0,4	14
4	2,5	0,3	13
5	2,9	0,35	12

Требуется:

- сформировать свой вариант исходных данных по данным таблицы 4, используя формулы :

$$y = y' + 0.1N;$$

 $x_1 = x_1' + 0.1N;$
 $x_2 = x_2' + 0.1N.$

- Построить эконометрическую модель, уравнение множественной регрессии $y = a_1 x_1 + a_2 x_2 + b$ зависимости среднедушевого потребления овощей от размера дохода и индекса цен.
- Найти линейные коэффициенты множественной корреляции и детерминации, среднюю ошибку аппроксимации.
- Оценить статистическую значимость уравнения с помощью критерия Фишера.
- Осуществить прогноз для $x_{1np} = 1,1x_{1cp}, x_{2np} = 0,9x_{2cp}$.

Задание 6.

В таблице 5 дана информация о динамике потребления овощей за 5 лет и факторов, оказывающих влияние на объём потребления, индекс цен и среднемесячный доход.

Требуется:

- сформировать свой вариант исходных данных по данным таблицы 5, используя формулы:

$$y = y' + 0,1N$$
; $x_1 = x_1' + 0,1N$, $x_2 = x_2' + 0,1N$; $N =$ номер варианта.

- Построить эконометрическую модель, уравнение множественной регрессии $y = a_1 x_1 + a_2 x_2 + b$ зависимости среднедушевого потребления овощей от размера дохода и индекса цен.
- Найти линейные коэффициенты множественной корреляции и детерминации, среднюю ошибку аппроксимации.
- Оценить статистическую значимость уравнения с помощью критерия Фишера.
- Осуществить прогноз для $x_{1np} = 1,1x_{1cp}, x_{2np} = 0,9x_{2cp}$.

Таблица 5.

			таолица 5.
Номер года	Среднемесячный доход на душу	Индекс цен в %	Среднедушевое
	населения (тыс. руб.): $D = x_1'$	$J = x_2'$	потребление овощей в
		Z	месяц (кг): $P = y'$
1	10	2	16
2	9	2,2	15
3	8	2,4	14,4
4	7	2,5	14
5	6	3	12

Критерии оценки:

- Оценка «отлично» (25-30 баллов) выставляется студенту, если он правильно решил, оформил две задачи и в полном объёме раскрыл содержание двух теоретических вопросов;
- Оценка «хорошо» (18-24 баллов) выставляется студенту, если он правильно выполнил расчёты, но допустил неточности в оформлении заданий и ответил на два теоретических вопроса, или если он правильно выполнил расчёты, но раскрыл один теоретический вопрос;
- Оценка «удовлетворительно» (10-17 баллов) выставляется студенту, если он правильно выполнил и оформил задание, или решил задачу, но допустил ошибки и неточности в промежуточных расчётах, в оформлении, а так же раскрыл один теоретический вопрос;
- Оценка «неудовлетворительно» (0-9 баллов) выставляется студенту, если он не справился с решением предложенных заданий и не раскрыл содержание ни одного из двух теоретических вопросов.