Государственное образовательное учреждение «Приднестровский государственный университет им. Т.Г. Шевченко»

Кафедра общей и теоретической физики

УТВЕРЖДАЮ

Заведующий кафедрой

профессор С.И. Берил

сентябрь 2019г

Фонд оценочных средств учебной дисциплины Б1.Б.15.01 ТЕОРЕТИЧЕСКАЯ МЕХАНИКА

Специальность

2.23.05.01 НАЗЕМНЫЕ ТРАНСПОРТНО-ТЕХНОЛОГИЧЕСКИЕ СРЕДСТВА

Специализация

«Подъемно-транспортные, строительные, дорожные средства и оборудование»

Для набора **2019 года**

Квалификация (степень) выпускника **инженер**

Форма обучения **очная**

Разработала

ст. преподаватель кафедры ОТФ

В.П.Гречушкина

сентябрь 2019

Тирасполь 2019

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

1.Процесс изучения дисциплины направлен на формирование следующих компетенций:

Код компетенции	Формулировка компетенции					
ОК-7	готовностью творческого по	использованию				

2. Паспорт фонда оценочных средств

	Контролируемые модули	Код кометролируемой	Наименование
	(темы) дисциплины	ком лелен/и и	ценочного средства
$N_{\underline{0}}$		(или ее части)	
1	Модуль 1 Статика	ОК- 7	Тест по модулю 1
2	Модуль 2 Кинематика	ОК- 7	Тест по модулю 2
3	Модуль 3 Динамика	ОК- 7	Тест по модулю 3
4	Модули 1 -3	ОК- 7	Контрольная работа

3.Показатели и критерии оценивания компетенций по этапам формирования

Этапы освоени я	Показатели достижения	Критерии оценивания результатов обучения				
компете	заданного уровня					
- нции	освоения компетенций	1	2	3	4	5
	Знать ОК-7	Не знае т	Знает	Знает	Знает	Знает основные

					основные
основные частнь	іе	эквивален	условия	условия	частные
случаи этих		тности	уравновешен	уравновешен	случаи этих
условий;		систем	ности	ности	условий;
			произвольно		
законы трения		сил;	й	произвольно	законы трения
скольжения и			системы сил	й системы	скольжения и
трения качения;			и основные	сил и	трения качения;
кинематические			частные	основные	кинематические
характеристики			случаи этих	частные	характеристики

1	движения точки			условий;	случаи этих	движения точки
	при различных			, 2010 Billi,		при различных
	способах задания				уеловин, законы	способах задания
	движения;				трения	движения;
	дыжения,				скольжения	движения,
	кинематические				И	кинематические
	характеристики движения				-	характеристики движения
	['				,	твердого тела и
	гвердого тела и его отдельных					
	* *				кис характеристи	его отдельных
	гочек при					_
	различных видах					различных видах
	движения тела;				-	движения тела;
	операции со					операции со
	скоростями и				способах	скоростями и
	ускорениями при				задания	ускорениями при
	сложном				движения;	сложном
	движении точки;					движении точки;
	приемы					приемы
					характеристи	
	интегрирования				И	интегрирования
						дифференциальн
	дифференциальны				ки движения	ЫХ
					твердого	
	х уравнений				тела	уравнений
	движения точки;				и его	движения точки;
	теоремы об				отдельных	теоремы об
	изменении				точек при	изменении
	количества				различных	количества
	движения,				видах	движения,
	кинетического				движения	кинетического
	момента и				тела;	момента и
	кинетической					кинетической
	энергии системы.					энергии системы.
	Уметь ОК-7					Умеет
		Не	Плохо	Умеет	Умеет	составлять
	составлять	умеет	умеет			уравнения
	уравнения		r		уравнения	равновесия для
	равновесия для			равновесия	равновесия	твердого тела,
			- 1		r	находящегося
	твердого тела,		равновеси	для твердого	для твердого	
	находящегося под		я для	тела,	тела,	действием
			7	находящегос	,	,
	действием		твердого		находяшегос	произвольной
	произвольной		_		я под	системы сил;
	системы сил;		находящег		действием	вычислять
	,			произвольно		
	ВЫЧИСЛЯТЬ			I *	произвольно	скорости и
	скорости и			системы сил;		ускорения точек
	ускорения точек		произволь	•		твердых тел,
Второй	ускорения точек		TTHORISONIP	DITHOMETOR	сил;	тьердых тел,
_	гвердых тел,		ной	скорости и	вычислять	совершающих
l Jimi	гоордых тол,	l	r.011	Propoeth h		го ве ршающих

совершающих	системы	ускорения	скорости и	поступательное,
-			-	вращательное
поступательное,	сил;	точек	ускорения	или
вращательное или		твердых тел,	точек	плоское
плоское		совершающи	твердых тел,	движения;
движения;		x	совершающи	вычислять
вычислять		поступательн	X	кинетическую
			поступатель	
кинетическую		oe,	Н	энергию
энергию		вращательно	oe,	многомассовой
многомассовой		е или	вращательно	системы;
системы;		плоское	е или	вычислять работу
DA VANADAGTA POPOTA		HD113401114		сил,
вычислять работу		[`		приложенных
сил, приложенных			движения;	к твердому телу,

	к твердому телу,				вычислять	при его
	при его					поступательном,
	1				1	1
	поступательном,					вращательном и
	вращательном и				многомассов	
	плоском				ой системы;	движениях.
	движениях.					
	Владеть ОК-7	Не	Плохо	Владеет	Владеет	Владеет методами
	тел;		я твердого		твердых тел;	
	методами		тела и	твердых тел;	методами	кинематического
	кинематического		системы		кинематичес	анализа твердого
	анализа твердого		твердых		кого анализа	гела при его
	_				твердого	_
	тела при его		тел;		тела	поступательном,
	поступательном,				при его	вращательном и
Третий					поступатель	
	вращательном и				Н	плоском
этап						
	плоском				ом,	движениях.
	движениях.				вращательно	методами
	методами				м и плоском	составления
						дифференциальн
	составления				движениях.	Ы

Типовые контрольные задания или иные материалы, необходимые для дисциплины / курса	Уровень / ступень образования	Статус дисциплины в рабочем учебном плане (А, Б, В, Г) (если введена модульно рейтин говая система)	Количество зачетных единиц / кредитов
Теоретическая механика	бакалавриат		3
	Смежные дисциплинь	ы по учебному плану (перечислить):

		«Физика»				
	ВВО	ДНЫЙ МОДУЛЬ				
(входной рейтинг-к	сонтроль, проверка	и «остаточных» знан	ий по смежным с	дисциплинам)		
Тема, задание или мероприятие входного контроля	Виды текущей аттестации	Аудиторная или внеаудиторная	Минимальное количество баллов	Максимальное количество баллов		
Физика	тестирование	Аудиторная	1	3		
Итого:	1	, 1	1	3		
БАЗОВЬ	ЫЙ МОДУЛЬ (про	верка знаний и умен	ий по дисциплин	ie)		
Тема, задание или мероприятие входного контроля	Виды текущей аттестации	Аудиторная или внеаудиторная	Минимальное количество баллов	Максимальное количество баллов		
	ные понятия и оп	ределения. Основнь	ые теоремы стати	ІКИ. 		
Системы сил, действующих вдоль одной прямой. Равновесие плоских систем сходящихся сил.	устный ответ на практическом занятии	Аудиторная	1	2		
	Статика несвобод	ного абсолютно тве	ердого тела.	.		
Равновесие плоской системы произвольно расположенных сил. Расчет плоских ферм	устный ответ на практическом занятии	Аудиторная	1	2		
Равновесие пространственной системы сил	устный ответ на практическом занятии	Аудиторная	1	2		
Рубежный и промежуточный контроль освоения заданных дисциплинарных компетенций	Рубежное тестирование	Внеаудиторная	3	5		
		ределенные силы.	T	ı		
Определение центров тяжести тел. Равновесие систем распределенных сил	устный ответ на практическом занятии	Аудиторная	1	2		
	2 Ки	нематика точки.	Τ	T		
Уравнения движения материальной точки. Определение параметров движения материальной точки	устный ответ на практическом занятии	Аудиторная	1	2		
Кинематика твёрдого тела.						
Вращение твердого тела вокруг неподвижной оси. Плоское движение твердого тела	устный ответ на практическом занятии	Аудиторная	1	2		

Рубежный и промежуточный контроль освоения заданных дисциплинарных компетенций	Рубежное тестирование	Внеаудиторная	3	5
		ое движение точки		
3 Дина	мика материальн	ой точки. Основы т	еории колебаний	í.
Дифференциальные уравнения движения материальной точки	устный ответ на практическом занятии	Аудиторная	1	2
Общие т	георемы динамик	и. Динамика абсолн	отно твёрдого те	ла.
Применения основных теорем движения материальной точки	устный ответ на практическом занятии	Аудиторная	1	2
Рубежный и промежуточный контроль освоения заданных дисциплинарных компетенций	Рубежное тестирование	Внеаудиторная	3	5
Контрольная работы.	Контрольная работа	Внеаудиторная	35	55
Итого:			52	86
	ДОПОЛН	ИТЕЛЬНЫЙ МОДУ	ЛЬ	
Тема, задание или мероприятие входного контроля	Виды текущей аттестации	Аудиторная или внеаудиторная	Минимальное количество баллов	Максимальное количество баллов
Подготовка реферата	устный ответ на семинаре	Внеаудиторная	2	3
Подготовка и проведение обучающей лекции	Лекция	Аудиторная или внеаудиторная	3	5
Активное участие в интерактивном занятии	устный ответ на семинаре	Аудиторная	2	3
Итого:			7	11
Итого максимум:			60	100
Итоговый контроль	Зачет с оценкой	Аудиторная		

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ ЗНАНИЙ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ «МЕХАНИКА. ПРИКЛАДНАЯ МЕХАНИКА» РАЗДЕЛ «Теоретическая механика»

I модульная контрольная работа «СТАТИКА»

- 1. Какие вопросы рассматриваются в статике?
- 2. Какое тело называется абсолютно твердым?
- 3. Что называется силой?
- 4. Какими факторами определяется сила, действующая на тело?
- 5. Что называется проекцией силы на ось и плоскость?
- 6. Что называется системой сил?
- 7. Какая сила называется равнодействующей данной системы сил?
- 8. Какая система сил называется уравновешенной?
- 9. Какая система сил называется уравновешивающей?
- 10. Какие системы сил являются эквивалентными?
- 11. Какое тело называется свободным?
- 12. Какое тело называется несвободным?
- 13. Что называется связью?
- 14. Что называется реакцией связи?
- 15. Как определить направление реакции связи?
- 16.Сформулируйте две основные задачи статики.
- 17.Сформулируйте формулируйте аксиомы статики.
- 18.Если деформируемое (не абсолютно твердое тело) находится в равновесии под действием некоторой системы сил, то будут ли эти силы удовлетворять условиям равновесия абсолютно твердого тела?
 - 19.Силы удовлетворять условиям равновесия абсолютно твердого тела?
 - 20.В чем заключается принцип освобождаемости от связей?
 - 21. Какая система сил называется сходящейся?
 - 22.К какому простейшему виду приводится система сходящихся сил?
- 23. Сформулируйте условия равновесия системы сходящихся сил в геометрической форме.
- 24.Сформулируйте условия равновесия системы сходящихся сил в аналитической форме.
 - 25. Какая механическая система является статически определимой?
 - 26. Какая механическая система является статически неопределимой?
 - 27. Что называется центром тяжести твердого тела?
 - 28. Какие методы используются для определения координат центра тяжести?
 - 29. Что называется моментом силы относительно точки?
 - 30. Как направлен вектор момента силы относительно точки?
 - 31.В чем состоит теорема Вариньона?
 - 32. Что называется моментом силы относительно оси?
- 33. Как связаны между собой момент силы относительно точки и момент силы относительно оси, проходящей через эту же точку?
 - 34. Что называется парой сил?
 - 35. Что называется плечом пары сил?
 - 36. Что называется моментом пары?
 - 37. Сформулируйте теорему о парах сил
 - 38.Сформулируйте лемму о параллельном переносе силы.
 - 39.К какому простейшему виду приводится пространственная система сил?
 - 40.Сформулируйте векторные условия равновесия пространственной системы сил.
- 41.Сформулируйте аналитические условия равновесия пространственной системы сил.
- 42.Сформулируйте аналитические условия равновесия пространственной системы пар сил.
 - 43. Сформулируйте аналитические условия равновесия произвольной плоской

системы сил.

- 44. Что такое сила и как опрелелить проекцию силы на оси координат?
- 45. Что такое момент силы?
- 46. Как вычислить момент силы относительно точки, если сила и точка принадлежат олной плоскости?
 - 47. Как при помоши теоремы Вариньона найти момент силы?
 - 48. Что такое связи?
 - 49. Сформулируйте принцип освобождаемости от связей.
 - 50. Как определяются реакции поверхности, стержня, шарнира?
 - 51.Сформулируйте условия равновесия сходящейся системы сил.
 - 52. Условия равновесия произвольной плоской системы сил.
 - 53. Как определить положение центра тяжести дискретной системы?
- 54. Как определить положение центра тяжести круга, прямоугольника, треугольника?

Примерные тестовые задания для текущего контроля по теме: «Статика» Вариант №1

1. Абсолютно твердым (абсолютно жестким) называется тело

- 1) сохраняющее форму при статических нагрузках
- 2) сохраняющее расстояние между частицами при действии на него других тел
- 3) обладающее высокой хрупкостью при внешних нагрузках
- 4) слабо подверженное пластической деформации

2. Силы, действующие по одной прямой в одну сторону и равные по модулю,

называются

- 1) эквивалентными
- 2) уравновешивающими
- 3) равнодействующими
- 4) сосредоточенными

3. Сколько решений имеет задача разложения силы на две составляющие?

- 1) единственное решение
- 2) бесчисленное множество решений
- 3) не менее трех решений
- 4) задача не имеет решения

4. Принцип отвердевания формулируется так:

- 1) при отвердевании нетвердого тела расстояние между его частицами останется неизменным
- 2) при отвердевании нетвердого тела действующие на него силы можно заменитьравнодействующей
- 3) при отвердевании нетвердого тела его механическое состояние становится уравновешенным
- 4) механическое состояние нетвердого тела не нарушится, если оно станет абсолютнотвердым

5. Укажите правильную формулировку теоремы Вариньона

- 1) момент равнодействующей плоской системы сил относительно какой-либо точки, расположенной в плоскости действия сил, равен произведению модуля равнодействующейна расстояние от линии ее действия до данной точки
- 2) момент равнодействующей равен произведению суммы всех сил, составляющих систему, на среднее расстояние от линии действия равнодействующей до линий действия сил системы
- 3) момент равнодействующей силы относительно какой-либо точки, расположенной вплоскости действия сил, равен алгебраической

сумме моментов составляющих сил относительно той же точки 4) плоская система пар сил не имеет равнодействующей, а сумма проекций всех сил,составляющих систему пар на любую ось эквивалентна нулю

II модульная контрольная работа «Кинематика»

- 1. Какую форму движения изучает теоретическая механика?
- 2. Какое движение называется механическим?
- 3.В чем заключается координатный способ задания движения точки?
- 4.В чем заключается векторный способ задания движения точки?
- 5. Что называется скоростью точки?
- 6. Как определить скорость точки по закону ее движения, заданному в координатной форме?
 - 7. Что называется ускорением точки?
- 8. Как определяется ускорение точки при задании движения в декартовых координатах?
 - 9.В чем заключается естественный способ задания движения?
 - 10. Как направлено нормальное ускорение точки?
 - 11. Как направлено касательное ускорение точки?
 - 12. Какое движение твердого тела называется поступательным?
- 13.Сформулируйте теорему о движении точек твердого тела, движущегося поступательно.
 - 14. Какое движение твердого тела называется вращательным?
 - 15. Что называется углом поворота, угловой скоростью и угловым ускорением?
 - 16. Какое вращение твердого тела называется равномерным?
 - 17. Какое вращение твердого тела называется равнопеременным?
- 18. Какова зависимость между угловой скоростью вращающегося тела и числом его оборотов в минуту?
 - 19. Как направлен вектор угловой скорости тела?
- 20. Какова зависимость между угловой скоростью вращающегося тела и линейной скоростью точки этого тела?
- 21. Как найти касательное и нормальное ускорения точки твердого тела, вращающегося вокруг неподвижной оси?
 - 22. Какое движение твердого тела называется плоским?
 - 23. Сколько уравнений описывают плоское движение твердого тела?
 - 24. Что называется мгновенным центром скоростей?
 - 25. Как определить положение мгновенного центра скоростей?
 - 26. Как определить ускорение точки плоской фигуры?
 - 27. Какое движение точки называется сложным?
 - 28. Какое движение точки называется относительным?
 - 29. Какое движение точки называется переносным?
 - 30. Какая скорость называется относительной скоростью точки?
 - 31. Какая скорость называется переносной скоростью точки?
 - 32. Какая скорость называется абсолютной скоростью точки?
 - 33. Какое ускорение называется относительным ускорением точки?
 - 34. Какое ускорение называется переносным ускорением точки?
 - 35. Какое ускорение называется абсолютным ускорением точки?
 - 36.В чем состоит теорема о сложении скоростей в сложном движении точки?
 - 37. Как определяется абсолютное ускорение точки?
 - 38. Как определяется направление кориолисова ускорения точки?
 - 39.В каких случаях кориолисово ускорение точки равно нулю?
 - 40. Как задается движение точки и находятся ее скорость и ускорение?

- 41. Какие вы знаете простейшие виды движения твердого тела?
- 42. Как определяются угловые скорость и ускорение при вращательном движение твердого тела относительно неподвижной оси?
 - 43. Как задается связь угловой и линейной скоростей (формула Эйлера)?
- 44. Как определяются скорости и ускорения точек тела при плоскопараллельном движении твердого тела?
- 45. Как с помощью мгновенного центра скоростей вычислить скорость точки твердого тела, которое движется плоскопараллельно?
- . Тестовые задания для текущего контроля по теме: «Кинематика»

Вариант 1

- 1. Какой из перечисленных ниже способов задания движения точки не применяется вкинематике?
 - 1) модульный
 - 2) координатный
 - 3) естественный
 - 4) векторный
- 2. Какая из приведенных ниже формул определяет нормальное ускорение в криволинейномдвижении?
 - 1) $a_n = \Delta v / \Delta t$
 - 2) $a_n = d^2 s / dt^2$
 - 3) $a_n = dv/dt$
 - 4) $a_n = v^2/\rho$
- **3.** Выберите правильное продолжение теоремы о разложении плоскопараллельного движения:

всякое плоскопараллельное движение можно разложить на...

- 1) поступательное движение и вращение относительно центра масс
- 2) одно поступательное и одно вращательное движение
- 3) вращательное движение относительно подвижной оси и поступательное движение центратяжести
- 4) поступательное движение и вращение относительно центра инерции
- 4. Вектор скорости точки вращающегося тела всегда направлен...
 - 1) по нормали к траектории
 - 2) от центра вращения
 - 3) перпендикулярно радиусу
 - 4) к центру вращения

5. Траекторией точки называется

- 1) путь, пройденный точкой за данный промежуток времени
- 2) линия, вдоль которой перемещается точка в пространстве
- 3) множество положений движущейся точки в рассматриваемой системе отсчета
- 4) расстояние, на которое точка перемещается за данный промежуток времени
- 6 Какая из приведенных ниже формул определяет тангенциальное ускорение вкриволинейном движении?
- 1) $a_{\tau} = v^2/\rho$
- 2) $a_{\tau} = \omega^2 r$
- 3) $a_{\tau} = dv/dt$
- 4) $a_{\tau} = \Delta \omega / \Delta t$

III модульная контрольная работа «Динамика»

- 1.В чем заключаются первая и вторая задачи динамики точки?
- 2. Что такое начальные условия?
- 3.В чем заключаются две основные задачи динамики точки?

- 4.В чем заключается решение второй задачи динамики?
- 5. Какая точка называется материальной?
- 6. Что такое инертность?
- 7. Сформулируйте первый закон Ньютона.
- 8.Сформулируйте основной закон механики.
- 9. Какие системы отсчета называются инерциальными?
- 10. Какие системы отсчета называются неинерциальными?
- 11. Сформулируйте третий закон Ньютона.
- 12.В чем заключается закон независимости действия сил?
- 13. Как записать дифференциальное уравнение движение- точки?
- 14. Что называют силой инерции?
- 15.Сформулируйте принцип Д' Аламбера для материальной точки.
- 16.В чем выражается основной закон динамики для относительного движения материальной точки?
 - 17.В чем заключается принцип относительности классической механики?
- 18. Как составляются дифференциальные уравнения движения точки при координатном способе задания ее движения?
- 19. Как определяются значения постоянных интегрирования при решении дифференциальных уравнений движения материальной точки?
- 20. Как составляются дифференциальные уравнения движения точки при естественном способе задания движения?
 - 21. Как записывается закон гармонических колебаний материальной точки?
 - 22. Как определяется частота собственных колебаний точки?
 - 23. Как определяется период гармонических колебаний точки?
- 24. Как определяются постоянные интегрирования, входящие в общее решение дифференциальных уравнений точки?
- 25. Какое колебательное движение материальной точки является затухающим?
- 26.От соотношения каких величин зависит общее решение дифференциальных уравнений затухающих колебаний материальной точки?
 - 27. Какие колебания материальной точки называются вынужденными?
- 28. Как представлено общее решение вынужденных колебаний материальной точки
 - 29. Сформулируйте основные законы механики.
 - 30. Укажите основные допущения, принимаемые в классической механике.
 - 31. Сформулируйте основные понятия механики.
 - 32. Дайте классификацию сил, действующих на материальную точку.
- 33.Проверьте правильность определения наиболее употребляемых реакций связей.
- 34.Сформулируйте основные задачи статики, кинематики и динамики точки и укажите на методы их решения.
- 35.В чем сущность принципа освобождаемости от связей и как это проявляется в дифференциальных уравнениях движения точки.
 - 36. Что называется массой механической системы?
 - 37. Что называется центром масс механической системы?
 - 38. Что называется моментом инерции точки относительно оси?
 - 39. Что называется моментом инерции системы относительно оси?
 - 40. Каково физическое значение момента инерции тела относительно оси?
 - 41. Что называется радиусом инерции тела относительно оси?
- 42. Сформулируйте теорему о зависимости между моментами инерции тела относительно двух параллельных осей.
 - 43. Какие силы называются внешними?

- 44. Какие силы называются внутренними?
- 45.Перечислите свойства внутренних сил.
- 46. Что такое количество движения материальной точки?
- 47. Что называется элементарным импульсом силы?
- 48. Что такое количество движения системы?
- 49. Что называется кинетическим моментом точки относительно центра?
- 50. Что называется кинетическим моментом системы относительно центра и оси?
 - 51. Дайте определение элементарной работы.
 - 52. Дайте определение мощности.
 - 53. Что называется кинетической энергией точки?
 - 54. Что называется кинетической энергией системы?
 - 55.Сформулируйте теорему о движении центра масс системы.
 - 56.Сформулируйте теорему об изменении количества движение системы.
 - 57.Сформулируйте теорему об изменении кинетического момента системы.
 - 58. Сформулируйте теорему об изменении кинетической энергосистемы.
- 59.Входят ли в уравнение, описывающее теорему об изменении кинетической энергии системы, внутренние силы этой системы?
- 60.В чем заключаются законы Ньютона?
 - 61. Что такое сила инерции Даламбера?
 - 62. Что такое импульс силы, работа, мощность, кинетически энергия?
 - 63. Что такое осевой момент инерции и как он вычисляется деточки и некоторых твердых тел?
 - 64. Как вычисляются меры механического движения (количеств: движения, момент количества движения для точки, материально? системы и твердого тела) при поступательном и вращательное движении?
 - 65. Сформулируйте общие теоремы динамики:
 - 66.а) теорема о движении центра масс;
 - 67.б) теорема об изменении количества движения;
 - 68.в) теорема об изменении момента количества движения;
 - 69.г) теорема об изменении кинетической энергии

Тестовые задания для текущего контроля по теме «Динамика» Вариант 1

1. Изолированная материальная точка это

- 1) бесконечно малый участок, не проводящий электрический ток
- 2) точка, на которую не действуют другие материальные точки
- 3) материальная точка, находящаяся в замкнутом пространстве
- 4) точечный заряд, окруженный изолирующей материей

2. Третий закон Ньютона (третий закон динамики) формулируется так

- 1) ускорение материальной точки пропорционально приложенной силе
- 2) причиной изменения состояния материальной точки является сила
- 3) силы взаимодействия двух материальных точек равны по модулю и направленыпротивоположно
- 4) сила есть вектор, равный произведению массы материальной точки на ее ускорение
- 3. Траектория материальной точки, брошенной под углом к горизонту, представляетсобой:
- 1) параболу с горизонтальной осью симметрии
- 2) параболу с вертикальной осью симметрии

- 3) гиперболу с вертикальной осью симметрии
- 4) усеченный эллипс
- 4. Центробежная сила инерции при криволинейном движении всегда направлена
- 1) от мгновенного центра кривизны траектории
- 2) по касательной к траектории в сторону, противоположную ускорению
- 3) по касательной к траектории в сторону ускорения
- 4) к мгновенному центру кривизны траектории
- 5. Работа постоянной силы, приложенной к вращающемуся телу, равна произведению вращающего момента этой силы на
- 1) угловое перемещение тела
- 2) угловую скорость тела
- 3) угловое ускорение тела
- 4) частоту вращения тела

5.Первый закон Ньютона (первый закон динамики) формулируется так:

- 1) действие равно противодействию
- 2) ускорение материальной точки прямо пропорционально модулю силы, вызывающей этоускорение
- 3) все тела под действием притяжения Земли падают с одинаковым ускорением
- 4) изолированная материальная точка находится в состоянии покоя или движетсяпрямолинейно и равномерно

4. 6.Работа равнодействующей системы сил на каком-то участке пути равна

- 1) произведению работ составляющих сил на том же участке пути
- 2) нулю
- 3) отношению модуля равнодействующей к величине перемещения материальной точки
- 4) алгебраической сумме работ составляющих сил на том же участке пути.

Составитель		/В.П.Гречушкина	. ст.преподаватель	кафедры
	ОТФ/		•	1 1