

ЕСТЕСТВЕННО-ГЕОГРАФИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА ХИМИИ И МПХ

«Утверждаю» Заведующий кафедрой Химии и МПХ

доц.

Щука Т.В.

Протокол №2 от 26.09.2023 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

Б1.О.13.01 «Химия неорганическая и аналитическая»

Направление

35.03.05 Садоводство

Специализация

«Декоративное садоводство»

Квалификация: Бакалавр

Форма обучения: заочная

ГОД НАБОРА 2023

Разработчик: к.б.н., доцент

Тихоненкова Л.А. «<u>26</u>» <u>09</u> 2023 г.

г. Тирасполь, 2023г.

Паспорт фонда оценочных средств по учебной дисциплине

1. В результате изучения дисциплины «Химия неорганическая и аналитическая» у обучающихся должны быть сформированы следующие компетенции

Категория (группа) общепрофессиональных компетенций	Код и наименование общепрофессиональной компетенции	Код и наименование индикатора до- стижения общепрофессиональной компетенции
	ОПК-1. Способен решать типовые задачи профессиональной деятельности на основе знаний основных законов математических и естественных наук с применением информационно-коммуникационных технологий	ИД-1 _{ОПК-1} Демонстрирует знание основных законов математических, естественнонаучных и общепрофессиональных дисциплин, необходимых для решения типовых задач в области агрономии ИД-2 _{ОПК-1} Использует знания основных законов математических и естественных наук для решения стандартных задач в агрономии ИД-3 _{ОПК-1} Применяет информационнокоммуникационные технологии в решении типовых задач в области агрономии

2. Программа оценивания контролируемой компетенции:

Текущая	Контролируемые модули, раз-	Код контролируемой	Наименование оце-	
аттестация	делы (темы) дисциплины и их	компетенции (или ее	ночного средства**	
	наименование *	части)		
1	Раздел 1	ОПК-1	Комплект тестов № 1	
	Базовые основы неорганической			
	химии			
2	Раздел 2	ОПК-1	Комплект тестов № 2	
	Методы анализа химических со-			
	единений			
Промежу-	Контролируемые модули, раз-	Код контролируемой	Наименование оце-	
точная	делы (темы) дисциплины и их	компетенции (или ее	ночного средства**	
аттестация	наименование *	части)		
		,		
1		ОПК-1	Комплект КИМ №1,	
	Экзамен (1 семестр)		Комплект вопросов к	
			экзамену	

Перечень оценочных средств

№ п/п	Наименование оценочного средства	Краткая характеристика оценочного средства	Представление оценочного средства в фонде
1	Собеседование	Средство контроля, организованное как специальная беседа преподавателя с обучающимся на темы, связанные с изучаемой дисциплиной, и рассчитанное на выяснение объема знаний обучающегося по определенному разделу, теме, проблеме и т.п.	Вопросы по темам (разделам) дисциплины
	Контрольная работа	Средство проверки умений применять полученные знания для решения задач определенного типа по теме или разделу	Комплект контрольных заданий по вариантам
2	Тест	Система стандартизированных заданий, позволяющая автоматизировать процедуру измерения уровня знаний и умений обучающегося.	Фонд тестовых заданий

ЕСТЕСТВЕННО-ГЕОГРАФИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ХИМИИ И МПХ

Тесты для итогового контроля по дисциплине «Химия неорганическая и аналитическая» Вариант входного теста на проверку остаточных знаний по химии

проверки остаточных знаний по программе общего среднего образования, содержит преимуще-
ственно понятийный аппарат и задачи на основные законы стехиометрии. Тест содержит 10 во-
просов, по каждому из которых предлагается 4 варианта ответов, и лишь один из них правиль-
ный. Время выполнения задания – не более 20 минут.

проверки остаточных зн ственно понятийный ап	паний по программе с парат и задачи на осн	бщего среднего об овные законы сте	тическом занятии по химии бразования, содержит преиму хиометрии. Тест содержит 10
			ов, и лишь один из них прав
ный. Время выполнения	задания – не более 2	0 минут.	
1 Относительная	и молекулярная масса	апюминия упорил	a narua.
Варианты ответов:	т молекулирная масса	шпоминия хлорид	а равна.
4	б) 133,5;	в) 60.5 г/моль:	г) 87,5.
	во состоит из частиц:		1) 0/30
Варианты ответов:	bo cocroni no nacing.		
-	же химического элеме	ента;	
			имических элементов;
в) разных химиче		1	,
/ 1	ложного вещества.		
3. Морская вода -			
Варианты ответов:			
=	гво: б) сложное	вешество: в) смесь простых веществ;
г) многокомпоне	· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , , ,	, , ,
		$+ OH^- <=> H_2O coe$	ответствует взаимодействию:
Варианты ответов:	J 1	2	
a) Fe(OH) ₃ c HCl;	б) Н	NO₃ c NaOH:	
в) Cu(OH) ₂ с H ₂ S	O_4 : ΓC	H ₃ COOH c NH ₄ OH	ł.
	рия карбоната среда:	J	
Варианты ответов:	1 1 1 7		
-	б) нейтральная;	в) основная:	г) солёная.
			ой кислотой образуются:
Варианты ответов:			1 7
•	$CuSO_4 + SO_2 + H_2O$;	B) $CuO + H_2S$;	Γ) CuO + S + H ₂ O.
	As - Sb - Bi неметалл		

Варианты ответов:

б) остаются без изменения; а) усиливаются;

в) ослабевают; г) превращаются в кислотные.

8. Гомологический ряд алканов:

Варианты ответов:

a) C_2H_6 , C_3H_8 , C_4H_{10} , C_5H_{12} ; 6) C_2H_2 , C_3H_4 , C_4H_6 , C_5H_8 ; B) C_2H_4 , C_3H_6 , C_4H_8 , C_5H_{10} ; Γ) CH₄, C₂H₈, C₃H₁₂, C₄H₁₆, C₅H₂₀.

9. Высокомолекулярному соединению «полипропилен» соответствует мономер:

Варианты ответов:

a) CH ₂ =CH-CH ₃ ; 6) CH	/	в) CH ₂ =CH-	-CH ₂ Cl;	г) CH ₂ =CH-	C_6H_5 .	
10. Атомное ядро состоит	из:					
Варианты ответов:	-					
а) протонов и электронов;		йтронов и эле	ктронов;		В)
нуклонов и электронов;	г) протонов	и нейтронов.				
Вариант обучающего тес	та для закре	пления знані	ий по тем	ие «Основны	ые химич	еские
	понятия и з	аконы хими	и»			
Тест рассчитан на трудоег	мкость 0.5 ак	элемического	часа (20	минут) и пі	пелпагаетс	ся как
упражнение для закрепления пон			,	• /	-	
держит три блока заданий: в бло						
женных вариантов ответов лишь						
кать ответы и вписать их в задани		-,,	,			
,						
А) Выберите правильны	,	дите его круг	жком).			
1. Химическое вещество э	то:					
Варианты ответов:						
а) смесь одинаковых или р		•				
б) материя, обладающая ф						
в) набор достаточного ко	личества атог	мов, ионов, м	иолекул д	іля проявлен	ния их хи	миче-
ских свойств;	··		*****	D T 01 (01 T 0 D		
г) химический элемент или 2 . Химическое соединение		гь разных хим	ических	элементов.		
Варианты ответов:	7 910.					
а) совокупность одинаков	มx นทน ก ลรหม	х атомов объ	елиненнь	лх химическо	ой связью	•
б) набор атомов или моле						
ниях;	11,711, 0110000111	JIII	orb b pus	P -	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
в) материальный объект, о	бладающий х	имическими	свойства	ми;		
г) соединение химических						
3. Сложные химические со						
Варианты ответов:						
а) набора простых веществ;	б) атомов ра	зных химичес	ских элем	иентов;		
в) смесей атомов или молекул;			химичест	ких соединен	ний.	
4. Единица измерения кол	ичества веще	ства —				
Варианты ответов:						
а) молекула;б) ато			г) хими	ический экви	івалент.	
5. Одному молю ионов вод	цорода эквива	лентен:				
Варианты ответов:						
а) один атом водорода;						
б) одна молекула кислород	•					
в) один грамм одновалентг) один моль любого хими		-	ных ионс	ob;		
г) один моль люоого хими	ческого веще	ства.				
Б) Допишите необходими	ые слова (вы	пажения, фог	рмулы).			
1. Явление, когда одно и				зует несколь	ько химич	еских
, называется			1	,		
2. Относительная плотн	ость	показ	ывает, в	о сколько	раз одиг	н газ
или	_ другого газа	ı .				
3. Постоянная Авогадро	показывает, і	какое				co-
держится в 1 моле любого химич	еского вещес	гва.				

4. Математи	ческому выражению зако	она эквивалентов	И. Рихтера соответств	ует формула
	химического вещества зтого вещества обра	зован из	атомарного кали	
	и	атомарного к	ислорода.	
В) Произвел	ця соответствующие рас	счеты, установит	е правильный ответ.	
	8 г серы с 20 г порошка х			получили:
Варианты ответо		1	1 7	J
а) 28 г желез	ва сульфида в смеси с сер	оой; б) 28 г железа	сульфида в смеси с же	елезом;
в) 28 г желез	за сульфида;	г) 28 г серы и	железа.	
2 . В 44 г дио	оксида углерода содержит	тся атомов кислор	ода:	
Варианты ответс				
	6) 12,04·10 ²³ ;			
	рный кислород массой 1	г при нормальных	к условиях занимает об	бъем:
Варианты ответо				
	б) 11,2 л;			
	во вещества эквиваленто	ов фосфора, кисло	рода и брома в соеди	нениях РН ₃
H_2O , КВr равны:				
Варианты ответ				
	, 0,50 моль, 1,0 моль;			в) 31
	80 г/моль; г) 10 г/мо			
	IH ₃ тяжелее водорода H ₂	и легче азота N_2 , т	гак как:	
Варианты ответо		D 0.5 D		`
a) $M_r(NH_3) =$	= 17;	$D_{H2} = 8.5 \text{ H } D_{N2} = 0$	0,6;	в)
$\omega(N) = 82\%, \omega(H) =$	= 18%; Γ) M(H ₂) = 2 Γ /MC	оль; $M(N_2) = 28 \text{ г/з}$	моль.	
	Вы	ходной тест		
	для студентов не	химических напр	авлений	
	Ba	риант № n		
Задание 1				
Правильные	химические понятия при	исутствуют в след	ующем наборе	
Варианты ответо	<i>96</i> :			
а) молекулы	хлорида натрия, воздуха	а, аргона;		
	ия, кислорода, железа;			
в) оксиды А	l_2O_3 и Fe_2O_3 состоят из м	олекул алюминия	, железа и кислорода;	
,	аммиака и уксусной кис	лоты состоят из ат	гомов N_2 , H_2 и C_2 , H_2 , (O_2 .
Задание 2				
	ов кислорода и азота, вст	•	но получения 4 моль э	квивалентов
· /· •	вны соответственно (н.у.	.):		
Варианты ответс			_	
a) 11,2 л O ₂ 1		б) 5,6 л O ₂ и 2		
в) 22,4 л O ₂ 1	и 11,2 л N ₂ ;	г) 2,8 л О ₂ и 3	5,6 л N ₂ .	
Задание 3	v	2	~ ^	
-	цействии 1 л неизвестног	-	оода образуется 2 л ди	оксида угле-
•	ормула неизвестного газа	a:		
Варианты ответс) C N) C M	
a) C_2N_2 ;	6) CN ₂ ;	B) C_2N_4 ;	Γ) C_3N_4 .	
Задание 4			1	
Отрицательн 1-20-20 борга	ные ионы элементов имен $1s^2 2s^2 2p^6 (3^{2-});$	ют электронные ко	онфигурации:	
		[Ar]3a 4s ⁻ 3p	$O(3^{3-})$. Эти эле	менты:
Варианты ответо	<i>)6</i> .			

	а) фтор, кислород, мышьяк;в) натрий, магний, рубидий;Задание 5		б) неон, аргон, криптон; г) неон, кислород, селен.		
При бомбардирові	ке α-частицами ядра	изотопа урана-238 с	оно превращается в ядро изо-		
топа					
Варианты ответов:		,	`		
а) полония; <i>Задание 6</i>	о) нептуния;	в) плутония;	г) америция.		
	RH. в везущетате ги	брилизации s- и n - о	рбиталей внешнего энергети-		
ческого уровня имеют пр	• •	•	роиталси внешнего энергети-		
ческого уровня имсют пр Варианты ответов:	остранственную стру	ктуру			
а) пирамидальную		б) п	поскую треугольную;		
, -		· · · · · · · · · · · · · · · · · · ·	г) тетраэдрическую.		
Задание 7	ii iisiookyio ipoyi osib	ilyio coolbelelbellilo,	т) тетраздри тескую.		
	ых молекул наблюдан	отся слелующие вил	ы взаимолействий:		
Варианты ответов:	m monenym maomogar	отом отодующие вид	ы вошилоденетвин.		
а) ориентационное	2:	б) ориентационное	е и индукционное:		
	е и дисперсионное;	, -	<u> </u>		
Задание 8	,, 1	, , , ,	1		
Комплексному со	единению «триамин	отрихлоридоплатин	ы (4) хлорид» соответствует		
следующая координацион		1 1			
Варианты ответов:					
a) $(NH_4)_2[PtCl_6];$	6) [Pt(NH ₃) ₃]Cl ₄ ;	B) [Pt(NH ₃) ₃ Cl ₃]Cl;	Γ) [Pt(NH ₃) ₃ Cl ₄].		
Задание 9					
В ряду неорганиче	еских соединений НС	Cl, HCN, HCOOH, NI	H ₄ OH, HNO ₃ «лишним» веще-		
ством является:					
Варианты ответов:					
a) NH ₄ OH;	6) HCOOH;	B) HNO ₃ ;	r) HCN.		
Задание 10					
	бора функциональны	іх групп -			
-C=O;	-C = R; -C =	= O; $- C = O;$	- C = O		
\	\	\			
O - R)H H	NH_2		
класс сложных эфиров ог	ределяет группа:				
Варианты ответов:					
	6) – CHO;	B) - COOH;	Γ) – COOR.		
Задание 11					
	ойства элементов в ра	яду Na – Mg – Al			
Варианты ответов:					
, -	ак как уменьшается а	<u> </u>			
, -	к как увеличивается		-		
,	иодически, так как в				
	так как в атомах один	наковое число электр	онных слоёв.		
2 \ 12					
Задание 12					
Для фосфора не яв	ляется характерной с	степень окисления, р	авная:		
Для фосфора не яв Варианты ответов :					
Для фосфора не яв Варианты ответов: a) +1;	ляется характерной с б) -3;		авная: г) +5.		
Для фосфора не яв Варианты ответов: a) +1; Задание 13	6) -3;	B) +3;	r) +5.		
Для фосфора не яв Варианты ответов : a) +1; Задание 13 Если в газовой см	б) -3; иеси между веществ	B) +3;	r) +5.		
Для фосфора не яв Варианты ответов: а) +1; Задание 13 Если в газовой смеси р	б) -3; иеси между веществ	B) +3;	r) +5.		
Для фосфора не яв Варианты ответов: а) +1; Задание 13 Если в газовой смеси р Варианты ответов:	б) -3; иеси между веществ	в) +3; зами нет химическог	г) +5. го взаимодействия, то общее		

- б) произведению парциального давления любого газа в смеси на его объём;
- **в**) отношению количества вещества одного из компонентов газовой смеси к объёму всей смеси;
 - г) сумме парциальных давлений её компонентов.

Задание 14

Стандартная энтальпия образования $SO_3(\Gamma)$ равна -395,2 кДж/моль и она численно соответствует следующему уравнению реакции:

Варианты ответов:

a)
$$S(\Gamma) + (3/2)O_2(\Gamma) = SO_3(\Gamma);$$
 6) $S(\kappa) + (3/2)O_2(\Gamma) = SO_3(\Gamma);$ 8) $SO_2(\Gamma) + \frac{1}{2}O_2(\Gamma) = SO_3(\Gamma);$ $\Gamma) 2SO_2(\Gamma) + O_2(\Gamma) = 2SO_3(\Gamma).$

Задание 15

Из перечисленных реакций химических процессов при стандартных состояниях всех веществ

- 1) $MgO(\kappa) + H_2(\Gamma) = Mg(\kappa) + H_2O(\kappa);$ 2) $FeO(\kappa) + C(\Gamma pa\phi \mu T) = Fe(\kappa) + CO(\Gamma);$
- 3) $2ZnS(\kappa) + 3O_2(\Gamma) = 2ZnO(\kappa) + 2SO_2(\Gamma)$; 4) $Al_2O_3(\kappa) + 3SO_3(\Gamma) = Al_2(SO_4)_3(\kappa)$ самопроизвольно протекает только ...

Варианты ответов:

a) процесс № 1; **б**) процесс № 2; **в**) процесс № 3; **г**) процесс № 4.

Задание 16

При смешивании 1 моля вещества A с 1 молем вещества B в некотором объёме к моменту установления равновесия обратимой реакции $A(r) + B(r) \le 2D(r)$ образовалось 0,8 моль вещества D. Константа равновесия K_C этой реакции равна:

r) 1,78.

Варианты ответов:

a) 1,62; **b**) 1,34; **b**) 1,17;

Задание 17

Адсорбцией называется гетерофазный процесс ...

Варианты ответов:

- а) равновесного изменения концентрации раствора;
- б) испарения или конденсации жидкости;
- в) поглощения вещества всей поверхностью более конденсированного сорбента;
- г) кристаллизации или кипения раствора.

Задание 18

Реакция первого порядка A = B + C протекает с константой скорости, равной $5 \cdot 10^{-5}$ с⁻¹ при начальной концентрации вещества A, равной 0,2 моль/л. Через 1 час после начала процесса его скорость составит (моль/л·с):

Варианты ответов:

a) $8.5 \cdot 10^{-6}$; **b)** 0.17; **b)** 0.03; Γ) $4.0 \cdot 10^{-5}$.

Задание 19

Растворы всегда замерзают при более низких температурах, чем чистые растворители, так как ...

Варианты ответов:

- а) растворённое вещество понижает тепловой эффект процесса растворения;
- **б**) давление насыщенного пара над жидкостью не зависит от концентрации раствора, а над твёрдой фазой зависит;
- **в**) давление паров растворителя над жидким раствором и над твёрдой его фазой уравновешивается при более низкой температуре;
- Γ) молекулы растворённого вещества препятствуют затвердеванию молекул растворителя.

Задание 20

Для приготовления 2 л $0.05~\mathrm{M}$ раствора меди (2) сульфата потребуется безводной соли CuSO_4 :

Варианты ответов:

a) 160 Γ; **b**) 16 Γ; **c**) 64 Γ.

Задание 21

Диссоциации электролитов H_2SO_4 , $BaCl_2$, $Ca(OH)_2$ соответствуют следующие уравнения реакций:

Варианты ответов:

a)
$$H_2SO_4 \iff H^+ + (HSO_4)^T$$
, $(HSO_4)^T \iff H^+ + SO_4^{2^-}$; $BaCl_2 \iff (BaCl)^+ + Cl^T$, $(BaCl)^+ \iff Ba^{2^+} + Cl^T$; $Ca(OH)_2 \iff (CaOH)^+ + OH^T$, $(CaOH)^+ \iff Ca^{2^+} + OH^T$; $(CaOH)^+ \iff Ca^{2^+} + OH^T$; $Ca(OH)_2 \iff Ba^{2^+} + 2Cl^T$; $Ca(OH)_2 \implies (CaOH)^+ + OH^T$, $(CaOH)^+ \iff Ca^{2^+} + OH^T$; $Ca(OH)_2 \implies Ca^{2^+} + 2Cl^T$; $Ca(OH)_2 \implies Ca^{2^+} + 2Cl^T$; $Ca(OH)_2 \implies Ca^{2^+} + 2OH^T$; $Ca(OH)_2 \implies Ca^{2^+} + 2OH^T$; $Ca(OH)_2 \implies Ca^{2^+} + Cl^T$; $Ca(OH)_2 \iff Ca^{2^+} + Cl^T$; $Ca(OH)_2 \iff Ca^{2^+} + Cl^T$; $Ca(OH)_2 \iff Ca^{2^+} + 2OH^T$.

Задание 22

В растворах кислот серной H_2SO_4 и угольной H_2CO_3 с одинаковой концентрацией величина pH будет

Варианты ответов:

- **a**) больше в растворе H_2SO_4 , так как это сильный электролит, он по 1-й ступени диссоциирует полностью и частично по 2-й ступени, увеличивая тем самым концентрацию ионов H^+ в растворе, а значит, и рH:
- ${\bf 6}$) больше в растворе H_2CO_3 , так как это слабый электролит, диссоциирует в незначительной степени даже по первой ступени;
- **в**) больше в растворе H_2SO_4 , так как это сильная кислота, она смещает равновесие диссоциации воды в сторону ионов H^+ , что увеличивает pH;
 - г) иметь одинаковое значение, так как обе кислоты являются двухосновными.

Задание 23

Уравнения гидролиза натрия силиката Na_2SiO_3 по всем возможным ступеням и выражения для констант гидролиза по этим ступеням будут иметь следующий вид:

Варианты ответов:

а)
$$Na_2SiO_3 = 2Na^+ + SiO_3^{2-}$$
 - диссоциация полная необратимая в одну ступень, $SiO_3^{2-} + H_2O \Longleftrightarrow HSiO_3^- + OH^- - 1$ -я ступень гидролиза, его константа равна $k_{g1} = [HSiO_3^-] \cdot [OH^-]/[SiO_3^{2-}] = k_W/k_{d2}(H_2SiO_3);$ $HSiO_3^- + H_2O \Longleftrightarrow H_2SiO_3 + OH^- - 2$ -я ступень гидролиза, его константа равна $k_{g2} = [H_2SiO_3] \cdot [OH^-]/[HSiO_3^-] = k_W/k_{d1}(H_2SiO_3);$ 6) $Na_2SiO_3 + 2H_2O \Longleftrightarrow 2NaOH + H_2SiO_3 - гидролиз обратимый равновесный, $kg = [NaOH]^2 \cdot [H_2SiO_3]/[Na_2SiO_3] \cdot [H_2O]^2 = k_d(\kappa-\tauы)/k_d(coли);$ в) $Na_2SiO_3 + H_2O \Longleftrightarrow NaOH + NaHSiO_3 - 1$ -я ступень гидролиза, его константа $k_{g1} = [NaOH] \cdot [NaHSiO_3]/[Na_2SiO_3] = k_d(och)/k_d(coли),$ $NaHSiO_3 + H_2O \Longleftrightarrow H_2SiO_3 + NaOH - 2$ -я ступень гидролиза, его константа $k_{g2} = [H_2SiO_3] \cdot [NaOH]/[NaHSiO_3] = k_d(coли)/k_d(\kappa-\tauы);$ г) $Na_2SiO_3 = 2Na^+ + SiO_3^{2-} - 1$ -я ступень гидролиза, его константа $k_{g1} = [Na^{+]2} \cdot [SiO_3^{2-}]/[Na_2SiO_3];$ $SiO_3^{2-} + 2H_2O \Longleftrightarrow H_2SiO_3 + 2OH^- - 2$ –я ступень гидролиза, его константа $k_{g2} = [H_2SiO_3] \cdot [OH]^2/[SiO_3^{2-}].$$

Задание 24

Гидрофобный золь мышьяка (3) сульфида получен пропусканием избытка мышьяка (3) хлорида $AsCl_3$ в раствор сероводородной кислоты H_2S . Ядро коллоидной частицы образуется по уравнению

 $3H_2S + 2AsCl_3(изб) = \downarrow As_2S_3 + 6HCl.$

Формула мицеллы имеет следующий вид:

Варианты ответов:

- a) $\{[m(As_2S_3)\cdot nAs^{3+}\cdot 3(n-x)Cl^{-}yH_2O]^{3x+} + 3xCl^{-}zH_2O\};$
- **6**) $\{[m(As_2S_3)\cdot 3nCl\cdot (n-x)As^{3+}\cdot yH_2O]^{3x-} + xAs^{3+}\cdot zH_2O\};$
- **B)** $\{[m(As_2S_3)\cdot nAsCl_3\cdot (n-x)Cl^-\cdot yH_2O]^{x^-} + xH^+\cdot zH_2O\};$
- Γ) {[m(As₂S₃)·nHS⁻·(n-x)H⁺·yH₂O]^{x-} + xH⁺·zH₂O}.

Задание 25

Общая сумма коэффициентов в уравнении реакции

 $H_2O_2 + KMnO_4 + H_2SO_4 \rightarrow MnSO_4 + K_2SO_4 + O_2 + H_2O$ равна:

Варианты ответов:

- a) 7;
- **6**) 13;
- в) 44;
- r) 26.

Задание 26

В электрохимии катодом называют электрод, на котором происходит процесс ...

Варианты ответов:

- а) выделения газообразного продукта;
- б) осаждения твёрдой фазы;

в) восстановления вещества;

г) окисления вещества.

Задание 27

Физический смысл постоянной Фарадея заключается в том, что F

Варианты ответов:

- а) показывает количество элементарных зарядов, содержащихся в одном моле вещества;
- **б**) равна произведению постоянной Авогадро N_A на постоянную Ридберга R;
- **в**) равна 96 500 моль/К;
- г) показывает количество электричества, перенесенное одним молем электронов за одну секунду через один квадратный метр поверхности проводника.

Задание 28

Коррозией называют

Варианты ответов:

- а) процесс окисления поверхности металла под действием влаги без доступа воздуха;
- б) ржавление железа под действием кислорода воздуха при низкой температуре;
- **в**) процесс разрушения металла (сплава) в результате химического взаимодействия с окружающей средой;
 - г) потемнение поверхности металла при соприкосновении с другими металлами.

Задание 29

Присутствие катиона NH_4^+ в смеси с катионами K^+ , Cu^{2+} , Mg^{2+} можно доказать, используя в качестве реагента

Варианты ответов:

- **а**) реактив Чугаева ($C_4H_8N_2O_2$);
- $\mathbf{6}$) реактив Несслера ($K_2[HgI_4] + KOH$);
- **B)** pactbop $Na_3[Co(NO_2)_6]$;
- Γ) раствор H_2S .

Задание 30

Объёмное титрование является методом количественного анализа, основанным на

Варианты ответов:

- **а**) взвешивании точной навески неизвестного вещества и её растворении в заданном объёме растворителя;
- **б**) добавлении по каплям к раствору с неизвестной концентрацией точного объёма раствора с известной концентрацией;
 - в) определении точки эквивалентности растворов с участием индикаторов;
- г) определении концентрации исследуемого раствора по его эквивалентному взаимодействию с заданным объёмом другого раствора с точно известной концентрацией.

Составитель: Л.А. Тихоненкова

ЕСТЕСТВЕННО-ГЕОГРАФИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ХИМИИ И МПХ

<u>Домашняя контрольная работа</u> по дисциплине «Химия неорганическая и аналитическая»

Домашнее задание содержит 10 вопросов комплексного характера, позволяющих закрепить полученные знания, развить навыки вычислений и определенную степень компетенций в поиске наиболее точного и короткого ответа. Общая трудоемкость задания — 2 академических часа (120 минут).

- 1. Определите заряды комплексообразователей, их координационные числа и дайте названия следующим комплексным соединениям: $K_2[PtCl_4(OH)_2]$; $[Ni(NH_3)_6]S_2O_3$; $[Cr(H_2O)_3F_3]$; $[Fe(H_2O)_6][HgI_4]$.
- 2. Составьте координационные формулы следующих комплексных соединений: а) аммония диамминотетратиоцианатохромат (3); б) акватриамминодихлорокобальта (3) хлорид; в) акватриамминодихлороалюминия триацетатоферрат (2); г) октакарбонилдиродий.
- 3. Из раствора изомера эмпирической формулы $CoBrSO_4 \cdot 5NH_3$ красно-фиолетового цвета не удаётся осадить бромид-ионы Br^- , но при действии ионами Ba^{2+} осаждается $BaSO_4$. В растворе другого изомера этой же эмпирической формулы, но красного цвета, наоборот, не удаётся осадить $SO_4^{\ 2^-}$ ионы, но действием $AgNO_3$ осаждается серебра бромид AgBr. Составьте координационные формулы изомеров комплексных соединений.
- 4. Из водного раствора, содержащего 0.04 моль комплексного соединения состава $PtCl_4 \cdot 3NH_3$ при добавлении серебра нитрата осаждается 0.04 моль серебра хлорида. Составьте координационную формулу комплексного соединения и назовите его.
- 5. Используя справочные данные, объясните, почему невозможна реакция между анионами $[Fe(CN)_6]^{3-}$ и NCS^- , но возможна реакция между анионами $[Fe(NCS)_6]^{3-}$ и CN^- . Напишите уравнение возможной реакции обмена.
- 6. Из сочетания частиц Co^{3+} , NH_3 , NO_2^- и K^+ можно составить семь координационных формул комплексных соединений кобальта, одна из которых $[Co(NH_3)_6](NO_2)_3$. Составьте формулы других шести комплексных соединений кобальта.
- 7. Экспериментально установлено, что комплексный анион $[Ni(CN)_4]^{2-}$ проявляет диамагнитные свойства. Используя метод валентных связей, определите тип гибридизации атомных орбиталей при образовании этого иона.
 - 8. Составьте энергетическую диаграмму образования связей в комплексе $Na_2[TiF_6]$.
- 9. С позиций теории поля лигандов о строении комплексных соединений объясните причину наличия окраски у всех комплексных соединений золота в степени окисления +3 и отсутствие окраски у комплексных соединений золота в степени окисления +1.
- 10. Сравнив константы нестойкости комплексных ионов, установите, в каком направлении будет протекать реакция обмена:

$$[Zn(CN)_4]^{2-} + [Cu(NH_3)_4]^{2+} \le [Zn(NH_3)_4]^{2+} + [Cu(CN)_4]^{2-}.$$

Рубежный контроль

Задание включает в себя 10 вопросов теоретического и практического (решение задач) характера, в том числе:

1. Основные химические понятия - атом, молекула, количество вещества, газовые и стехиомет-

рические законы.

- 2. Расчеты по химическим формулам и химическим уравнениям.
- 3. Расчеты химического эквивалента и молярной массы эквивалента вещества.
- 4. Строение атома и Периодический закон Д.И. Менделеева. Ядерные превращения.
- 5. Теория химической связи. Построение схем химических связей по методу валентных связей и методу молекулярных орбиталей.
- 6. Межмолекулярные взаимодействия. Комплексные соединения.
- 7. Энергетика химических процессов. Кинетические закономерности. Химическое и термодинамическое равновесие. Принцип Ле Шателье-Брауна.
- 8. Основные классы неорганических соединений. Взаимные превращения веществ.
- 9. Основные классы органических соединений. Классификация и номенклатура.
- 10. Уравнивание окислительно-восстановительных реакций методом электронно-ионного баланса.

Модульный контроль осуществляется в аудитории, в присутствии преподавателя, вне учебного расписания, в течение одной академической пары.

Общая сумма баллов при правильном решении заданий модуля составляет 20.

Участие каждого студента в модульном рубежном контроле является обязательным.

Составитель:

Л.А. Тихоненкова

ЕСТЕСТВЕННО-ГЕОГРАФИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ХИМИИ И МПХ

Контрольная работа

по дисциплине «Химия неорганическая и аналитическая»

Основные понятия и законы химии. Строение вещества. Основные классы неорганических и органических соединений. Общие закономерности протекания химических процессов. Окислительно - восстановительные системы

Вариант № 1

- 1. Определите количество атомов азота в 17 г аммиака и в 17 моль аммиака.
- 2. При разложении 21 г карбоната двухвалентного металла выделилось 5,6 л оксида углерода (IV), измеренного при нормальных условиях. Установите формулу соли.
- 3. При взаимодействии 1,28 г металла с водой выделилось 380 мл водорода, измеренного при 21^{0} С и давлении 104,5 кПа. Определите молярную массу эквивалента металла.
- 4. Объясните, почему элементы № 40 и № 50 расположены в одном периоде, одной группе, но в разных подгруппах. Обоснуйте Ваш ответ согласно квантовой теории строения атомов этих элементов.
- 5. Распределите молекулы MgO, HF, S_2 , CO в порядке возрастания полярности связи в них. Объясните причины изменения полярности.
- 6. Определите заряд комплексообразователя в комплексном соединении $K[AsClF_3]$. Дайте название этому соединению.
- 7. Составьте уравнения реакций, с помощью которых можно осуществить следующие превращения:

$$Mg \rightarrow MgSO_4 \rightarrow Mg(OH)_2 \rightarrow MgO \rightarrow MgCl_2 \rightarrow Mg(NO_3)_2 \rightarrow MgO \rightarrow Mg.$$

8. Определите число веществ, изображенных при помощи следующих формул:

9. При разложении калия хлората по реакции

$$KClO_3(\kappa) \rightarrow KCl(\kappa) + \frac{1}{2}O_2(\Gamma)$$

образовалось 4,48 л (н. у.) газообразного кислорода. Определите выделившееся при этом количество энергии.

10. Уравняйте методом электронно-ионного баланса следующую окислительновосстановительную реакцию:

$$H_2O_2 + KMnO_4 + H_2SO_4 \rightarrow O_2 + MnSO_4 + K_2SO_4 + H_2O.$$

Вариант № 2

Задание включает в себя 10 вопросов теоретического и практического (решение задач) характера, в том числе:

- 1. Способы выражения состава раствора.
- 2. Законы Рауля и Вант-Гоффа (коллигативные свойства растворов).
- 3. Водородный показатель рН, произведение растворимости ограниченно растворимых соединений.
- 4. Равновесие в растворах электролитов. Сильные и слабые электролиты.

- 5. Гидролиз. Уравнения гидролиза: простого, сложного, ступенчатого.
- 6. Буферные системы. Механизм буферного действия.
- 7. Коллоидные системы. Строение коллоидной мицеллы.
- 8. Гальванический элемент. Определение электродного потенциала и ЭДС.
- 9. Электролиз в растворах электролитов. Выход вещества по току.
- 10. Коррозия металлов и методы защиты от коррозии.

Модульный контроль осуществляется в аудитории, в присутствии преподавателя, вне учебного расписания, в течение одной академической пары.

Общая сумма баллов при правильном решении заданий модуля составляет 20.

Участие каждого студента в модульном рубежном контроле является обязательным.

Контрольная работа№2 Теория растворов. Истинные и коллоидные растворы. Электрохимические системы и процессы

Вариант № 1

- 1. Рассчитайте, какими будут массовая доля и молярная концентрация азотной кислоты в растворе, если к 40 мл раствора азотной кислоты с массовой долей 96% (плотность раствора 1,50 г/мл) прилить 30 мл раствора кислоты с массовой долей HN0₃ 48% (плотность 1,30 г/мл). Полученный после смешивания раствор имеет плотность 1,45 г/мл.
- 2. Массовая доля неэлектролита в водном растворе равна 63%. Рассчитайте молярную массу этого неэлектролита, если при температуре 20° C давление водяного пара над раствором (P) равно 1399,40 Па. Давление паров воды (P_0) при данной температуре равно 2335,42 Па.
 - Даны уравнения двух реакций:

CH₃COOH + NaCl <=> CH₃COONa +HC1 $Na_2CO_3 + 2HC1 = 2NaC1 + H_2CO_3$. И

Определите, какая из этих реакций идет в прямом направлении, а какая - в обратном. Обоснуйте Ваше решение уравнениями в ионном виде.

- 4. Определите концентрацию ионов H⁺ и pH раствора муравьиной кислоты HCOOH, для которой константа диссоциации равна 1,8 • 10⁻⁴, а степень диссоциации 3%.
- 5. Для оценки степени кислотности (рН) раствора сероводорода студент записал следующие уравнения реакций: $H_2S = 2H^+ + S^2$; $S^{2-} + H_2O <=> HS^- + OH^-$. Студент сделал вывод, что среда в растворе стала основная (рН > 7). Найдите ошибки в его рассуждениях.
- 6. Опишите механизм буферного действия системы, состоящей из равных объемов одинаковой концентрации растворов муравьиной кислоты (HCOOH) и натрия формиата (HCOONa).
- 7. Золь серебра иодида AgI получен при добавлении к 0,02л 0,01H раствора KI 0,028л 0,005Н раствора AgNO₃. Определите заряд частиц полученного гидрофобного золя и напишите формулу его мицеллы.
- 8. Составьте гальванический элемент, образованный железным и свинцовым электродами, погруженными в 0,005 М растворы их солей. Рассчитайте ЭДС этого элемента и напишите схемы электродных процессов. Справочные данные: $\phi^{\circ}_{\text{Fe}\text{Fe}}^{2+=}$ - 0,44 B; $\phi^{\circ}_{\text{Pb/Pb}}^{2+}$ = - 0,13 B.

- Для получения 1 м³ хлора при электролизе водного раствора никеля хлорида было пропущено через раствор 2423 А·ч электричества. Определите выход хлора по току. Приведите полную схему электролиза раствора NiCl₂ с применением графитовых электродов.
- 10. Объясните причину глубокой коррозии железа при нарушении его защиты в виде луженого (оловянного) покрытия.

Составитель:

Л.А. Тихоненкова

ЕСТЕСТВЕННО-ГЕОГРАФИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ХИМИИ И МПХ

Вопросы для промежуточной аттестации (экзамен) по дисциплине " Химия неорганическая и аналитическая"

- 1. Роль химии в познании природы. Основные химические понятия, элемент, атом, количество вещества, эксивалент, массовое число, молярная масса эквивалента (эквивалентная маса)
- 2. Атомно-молекулярное учение о составе вещества. Эволюция этого учения.
- 3. Основные законы химии. Закон сохранения массы и энергии. Уравнение Энштейна. Закон постоянства состава. Дальтониды и бертоллиды. Закон кратных отношений.
- 4. Закон эквивалентов. Эквивалент элемента. Эквивалент соединения. Эквивалентная масса.
- 5. Газовые законы. Закон простых объемных отношений. Закон Авогадро. Следствия закона Авогадро. Молярный объем газа. Определение молекулярной массы газа по его относительной плотности.
- 6. Термохимия. Внутренняя энергия и энтальпия системы. Теплота и работа. Первый закон термолинамики.
- 7. Тепловой эффект химической реакции. Закон Гесса и следствия из него.
- 8. Энтропия и свободная энергия системы. Направление самопроизвольного протекания химической реакции.
- 9. Доказательства сложности атомов. Открытие явления радиоактивности А. Беккерелем. α, β, γлучи. Первоначальные теории строения атомов. Физический смысл порядкового элемента в Периодической системе Д.И. Менделеева. Закон Мозли.
- 10. Основные положения квантовой теории строения атома. Двойная природа электрона. Уравнение Луи де Бройля.
- 11. Строение электронных уровней в атоме. Квантовые числа, их физический смысл. Электронные формулы. Принцип Паули. Правило Гунда. Правило Клечковского.
- 12. Закон периодического изменения свойств элементов и их соединений Д.И. Менделеева. Его физический смысл. Развитие теории периодичности.
- 13. Структура Периодической системы элементов Д.И. Менделеева. Распределение элементов по периодам, группам, электронным семействам. Обзор закономерностей выражаемых периодической системой.
- 14. Периодичности атомов элементов. Атомные радиусы. Понятие об энергии ионизации, сродстве к электрону. Электроотрицательность атомов. Степень окисления.
- 15. Типы химической связи: ионная, ковалентная, донорно-акцепторная. Примеры соединений с различным типом связи.
- 16. Механизм образования ковалентной химической связи по методу валентных связей. Сигма- и пи-электронное взаимодействие. Примеры.
- 17. Свойства ковалентной химической связи: длина, энергия, насыщенность, направленность. Гибридизация электронных орбиталей и геометрическая формула молекулы.
- 18. Межмолекулярное взаимодействие: водородная и металлическая связи, ван-дер-ваальсовы силы. Примеры соединений с указанными взаимодействиями.
- 19. Скорость химической реакции. Молекулярность и порядок реакции. Факторы, влияющие на скорость реакции. Кинетическое уравнение. Константа скорости химической реакции.
- 20. Влияние температуры на скорость химической реакции. Правило Вант-Гофа. Энергия активации. Уравнение Аррениуса.

- 21. Гомогенный и гетерогенный катализ. Механизм каталитического действия. Биокатализаторы, механизм их работы и роль в живых организмах.
- 22. Химическое равновесие. Закон действующих масс и константа равновесия. Смещение химического равновесия в гомогенных и гетерогенных процессах. Принцип Ле-Шателье.
- 23. Общая характеристика растворов. Растворители. Теория растворения. Факторы, влияющие на процесс растворения.
- 24. Способы выражения раствора (массовая и молярная доля, молярность, нормальность, моляльность, титр).
- 25. Основные положения теории электролитической диссоциации С. Аррениуса. Степень и константа диссоциации. Сильные и слабые электролиты. Уравнение диссоциации. Ступенчатая диссоциация.
- 26. Степень диссоциации. Факторы, влияющие на степень диссоциации: природа растворителя, природа растворенного вещества, концентрация раствора, наличие одноименных ионов..
- 27. Ионные уравнения реакции. Примеры.
- 28. Диссоциация воды. Водородный показатель, значение рН среды в природных процессах.
- 29. Теория индикаторов.
- 30. Явление гидролиза солей при растворении. Простой, ступенчатый, полный гидролиз. Уравнение гидролиза.
- 31. Гидролиз соли по анионному типу. Уравнение гидролиза. Степень и константа гидролиза. Примеры.
- 32. Гидролиз соли по катионному типу. Уравнение гидролиза. Константа и степень гидролиза. Примеры. Понятие о константе и степени гидролиза. Взаимосвязь $K_{\text{гидр}}$ и h.
- 33. Гидролиз соли по катионно-анионному типу. Уравнение гидролиза. Константа и степень гидролиза. Примеры.
- 34. Окислительно-восстановительные процессы, их значение в живом организме. Важнейшие окислители и восстановители. Классификация окислительно-восстановительные реакции.
- 35. Методы составления уравнений окислительно-восстановительных реакций: метод электронного баланса и метод полуреакций.
- 36. Комплексные соединения. Определение комплексных соединений, основные положения координационной теории. Номенклатура комплексных соединений. Диссоциация комплексов в водных растворах.
- 37. Химическая связь в комплексных соединениях. Изомерия комплексных соединений. Константы устойчивости комплексов. Взаимосвязь константы нестойкости и константы устойчивости комплексов. Применение комплексных соединений.
- 38. Общая характеристика S-элементов по их положению в Периодической системе. Примеры S-элементов, широко используемых в сельском хозяйстве.
- 39. Общая характеристика р-элементов по их положению в периодической системе. Типичные представители р-элементов, широко применяемых в сельском хозяйстве.
- 40. Кислород и сера, их роль в жизнедеятельности организмов. Химические свойства и применение в сельском хозяйстве.
- 41. Галогены. Положение в Периодической системе. Строение, свойства. Кислородные производные галогенов. Применение в сельском хозяйстве.
- 42. Углерод и кремний как основа жизни. Особенности строения и свойства. Соединения на основе углерода и кремния.
- 43. Азот. Особенности строения и химические свойства. Биологическая роль. Аммиак, соли аммония, азотная кислота, азотные удобрения.
- 44. Общая характеристика d-элементов по их положению в Периодической системе Д.И. Менделеева. Значение микроэлементов (переходных металлов) в питании растений и животных.
- 45. Общая характеристика f-элементов по их положению в Периодической системе. Значение редкоземельных элементов и их применение.
- 46. Основные классы неорганических соединений. Строение. Номенклатура. Типичные представители.

- 47. Строение, способы получения, химические свойства оксидов.
- 48. Строение, способы получения, химические свойства солей. Классификация солей (нормальные, кислые, основные, двойные и комплексные).
- 49. Строение, способы получения, химические свойства оснований. Номенклатура, применение оснований.
- 50. Строение, способы получения, химические свойства кислот. Номенклатура и применение.

Составитель:

Тихоненкова Л.А.

Государственное образовательное учреждение «Приднестровский государственный университет им. Т.Г. Шевченко» Факультет Естественно-географический

«УТВЕРЖДАЮ» Зав. кафедрой Т.В.Щука_____

«01» 09 2023 г.

Дисциплина: Химия неорганическая и аналитическая

Направление/профиль подготовки: Садоводство / Декоративное садоводство

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 11

- 1. Диссоциация воды. Водородный показатель, значение рН среды в природных процессах.
- 2. Кислород и сера, их роль в жизнедеятельности организмов. Химические свойства и применение в сельском хозяйстве.
- 3. Определить эквивалентную массу сульфата алюминия, гидрооксида железа(III), фосфорной кислоты.

Составитель _____/ доцент кафедры Химии и МПХ Тихоненкова Л.А.

Критерии оценки:

Оценка 5 ставится, если на вопросы даны исчерпывающие ответы, проиллюстрированные наглядными примерами там, где это необходимо. Ответы изложены грамотным научным языком, все термины употреблены корректно, все понятия раскрыты, верно.

Оценка 4 ставится, если на вопросы даны в целом верные ответы, но с отдельными неточностями, не носящими принципиального характера. Не все термины употреблены правильно, присутствуют отдельные некорректные утверждения и грамматические / стилистические погрешности изложения. Ответы не проиллюстрированы примерами в должной мере.

Оценка 3 ставится, если ответы на вопросы носят фрагментарный характер, верные выводы перемежаются с неверными. Упущены содержательные блоки, необходимые для полного раскрытия темы. Студент в целом ориентируется в тематике учебного курса, но испытывает проблемы с раскрытием конкретных вопросов. Также оценка «удовлетворительно» ставится при верном ответе на один вопрос и неудовлетворительном ответе на другие.

Oиенка 2 ставится, если ответы на вопросы отсутствуют либо не соответствуют содержанию вопросов. Ключевые для учебного курса понятия, содержащиеся в вопросах, трактуются ошибочно.