### Лабораторная работа

#### КОНТАКТНАЯ СВАРКА

# Цели работы

- 1. Изучить способ точечной контактной сварки.
- 2. Определить основные параметры режима сварки тонколистовых заготовок и получить сварное соединение.

Оборудование и материалы: образцы сварных соединений, заготовки листовой стали для сварки, машина для точечной контактной сварки.

## Краткие теоретические сведения

Самым распространенным видом термомеханического класса сварки является контактная сварка. Сущность процесса заключается в сжимании заготовок с определенным усилием P и прохождении электрического тока через них. Ток нагревает заготовки, причем наибольшее количество тепла выделяется в месте их контакта (согласно закону Джоуля — Ленца), так как сопротивление контакта является наибольшим во вторичной цепи.

Подвидами контактной сварки являются точечная, стыковая и шовная сварка.

#### Точечная сварка.

Точечную сварку применяют преимущественно при соединении листовых заготовок. Свариваемые заготовки I (рис. 5.1) собирают внахлестку, сжимают между двумя медными электродами 2 с усилием  $P_{\rm H}$  и пропускают электрический ток (от сварочного трансформатора 3).

При кратковременном (0,01–0,5 с) протекании тока выделяется теплота в заготовках и электродах. В связи с тем что наибольшим электрическим сопротивлением обладает контакт между заготовками и электроды, как правило, охлаждаются водой и отводят теплоту с поверхности заготовок, интенсивный нагрев металла происходит только в месте контакта. Здесь металл расплавляется и появляется жидкое ядро. После образования жидкого ядра ток выключают и создают усилие осадки  $P_{\rm oc}$ . Ядро затвердевает, образуя сварную точку.

Кристаллизация металла происходит при повышенном давлении электродов, что предотвращает образование в ядре точки дефектов усадочного характера — пор, трещин, рыхлого металла. Стадии цикла и циклограмма точечной сварки с проковкой показаны на рис. 5.1, 6, 6.

Перед сваркой контактные поверхности деталей зачищают металлической щеткой, пескоструйной обработкой или травлением и обезжиривают

растворителями. Это необходимо для обеспечения стабильного процесса, который зависит от постоянства контактного сопротивления.

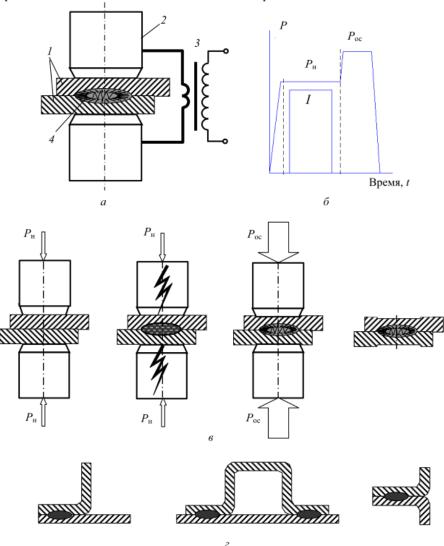



Рис. 5.1. Точечная контактная сварка: a — схема сварки;  $\delta$  — циклограмма;  $\epsilon$  — стадии сварки;  $\epsilon$  — типы сварных соединений

Контактная точечная сварка применяется для получения из листовых заготовок корпусных конструкций автомобилей, комбайнов, тракторов, приборов.

### Техника точечной сварки

Перед сваркой детали должны быть очищены от ржавчины, окалины, краски, жира и других загрязнений. Их поверхность должна быть по возможности гладкой и ровной.

При выборе параметров режима контактной точечной сварки необходимо учитывать материал и размеры изделия, способ сварки и тип машины. Диаметр электрода  $d_{5}$ , мм, выбирают в зависимости от толщины  $\delta$  и материала свариваемых деталей. Для низколегированных сталей

$$d_3 = (5-6)\sqrt{\delta}$$
.

Давление электрода на детали должно составлять 60–80 МПа. Усилие, кH, может быть рассчитано по формуле

$$F = (1,5-2,0)\delta$$
.

Для получения качественного сварного соединения определяющее значение имеет величина сварного тока I и время (период) его протекания  $t_{\rm cs}$ . Малое значение одного из этих параметров может привести к непровару, а чрезмерно большое — к выплеску металла. Поэтому при назначении режима сварки расчетный режим всегда проверяют опытным путем и при необходимости корректируют.

При сварке низкоуглеродистых сталей приближенное значение сварочного тока и длительности импульса определяют по следующим выражениям:

$$I = (8-10)1000\delta$$
,

$$t_{cr} = (0.12-0.16)\delta$$
,

где ток I измеряется в амперах, а длительность импульса — в секундах.

Величина нахлестки должна составлять не менее 0,5 $\delta$ . Расстояние, мм, между точками в одном ряду

$$L = (2-3)d_3$$
.

## Правила техники безопасности при работе на точечной сварочной машине:

- 1. Запрещается работать на машине, не ознакомившись с устройством и назначением ее узлов.
- Запрещается переключать ступени трансформатора при нахождении машины под напряжением.
  - 3. Запрещается работать на машине при открытых дверцах.
- Корпус машины и корпус сварочного трансформатора должны быть заземлены.

- 5. На время любого перерыва в работе машину необходимо отключать от сети.
- 6. Для защиты от ожогов искрами нужно иметь специальную прозрачную маску или очки, брезентовые рукавицы и фартук.

## Порядок выполнения работы

- 1. Ознакомиться со способом электрической контактной точечной сварки, ее разновидностями и технологическими особенностями.
- 2. Для заданных образцов с учетом их толщины и марки металла рассчитать по приведенным формулам режимы точечной сварки.
- 3. Соблюдая порядок работы на точечной сварочной машине, сварить образцы на подобранном режиме.
- 4. Изменив по указанию преподавателя один из параметров режима сварки, провести повторную сварку следующей пары образцов.
- 5. Сделать визуальный контроль качества полученного сварного соединения и провести испытание сварной точки на отрыв и на срез.
  - 6. Составить отчет.

### Содержание отчета

- 1. Краткое описание способов контактной сварки (схемы, циклограммы и образцы сварных изделий).
- 2. Расчет режима сварки для заготовок из листовой стали на машине точечной контактной сварки.
- 3. Описание дефектов, полученных при сварке, их причин и способов устранения (предотвращения).

### Контрольные вопросы

- 1. Какие факторы могут повлиять на прочность точки при контактной сварке?
  - 2. Назовите способы повышения производительности точечной сварки.
- 3. Чем объяснить повышенные затраты энергии при роликовой сварке по сравнению с точечной?
- 4. Почему стыковую сварку сопротивлением не применяют для соединения заготовок крупного сечения?
  - 5. Для сварки каких изделий используют шовную и точечную сварку?
  - 6. Как выглядит электрод при шовной сварке?
- 7. Почему теплота при контактной сварке интенсивнее выделяется между заготовками?