Лабораторная работа

ИЗМЕРЕНИЕ ДАВЛЕНИЯ И РАСХОДА ЖИДКОСТЕЙ И ГАЗОВ

2.1. Цель работы

Изучение основных методов измерений давления и расхода жидкостей и газов и ознакомление с измерительными приборами.

2.2. Задачи работы

Ознакомление с приборами, установленными в лаборатории, и с принципами их устройства; снятие показаний приборов; зарисовка схем измерений и принципиальных схем устройства основных приборов.

2.3. Основные сведения, устройство и принцип работы приборов

В качестве рабочего тела в тепловых машинах и аппаратах применяются различные жидкости и газы. Для оценки состояния термодинамической системы необходимо измерять такие параметры, как давление и расход рабочего тела. Для этого применяются различные манометры, вакуумметры и расходомеры.

2.3.1. Приборы для измерения давления

Приборы для измерения давления по принципу действия делят на 4 основные группы: жидкостные, измеряющие давление высотой уравновешивающего столба жидкости; пружинные, где давление оценивают по деформации различного рода упругих элементов; грузо-поршневые, в которых измеряемое давление уравновешивается давлением, создаваемым массой грузов и поршня; электрические, работа которых основана на зависимости электрических параметров преобразователя от измеряемого давления.

Жидкостные манометры (рис. 2.1) используются для измерения небольших значений избыточных давлений, вакуума или разности давлений. Эти приборы просты по устройству, однако дают точные показания. Они бывают двух видов: U-образные и чашечные (рис 2.1)

Рабочей жидкостью в манометрах может быть дистиллированная вода, ртуть, этиловый спирт, толуол и др.

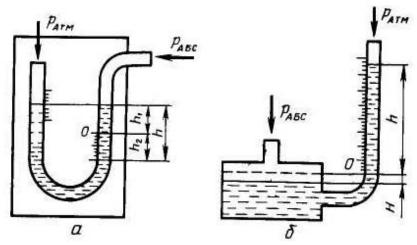


Рис. 2.1. Жидкостные манометры: а) U-образный двухтрубный; б) чашечный однотрубный

В U-образном манометре избыточное давление или разрежение (Па) уравновешивается столбом жидкости h (м) и определяется по формуле:

$$P = h \cdot g \cdot (\rho - \rho_{CP}) \tag{2.1}$$

Где ρ – плотность рабочей жидкости, кг/м³;

 ρ_{CP} – плотность среды над рабочей жидкостью, кг/м³;

g – ускорение свободного падения, м/ c^2 .

Величину отсчитывают по двум уровням по обе стороны от нулевого деления шкалы.

В чашечном манометре давление измеряется положением уровня жидкости в одной узкой трубке, а изменением высоты жидкости в широком сосуде обычно пренебрегают, но если отношение сечений измерительной трубки и сосуда f/F > 0.01, то формула приобретает вид:

$$P = h \cdot \rho \cdot g(1 + f/F) \tag{2.2}$$

Пружинные манометры (рис. 2.2). В пружинных приборах чувствительными элементами могут быть: трубчатые одно- или многовитковые пружины, мембраны, мембранные коробки и сильфоны.

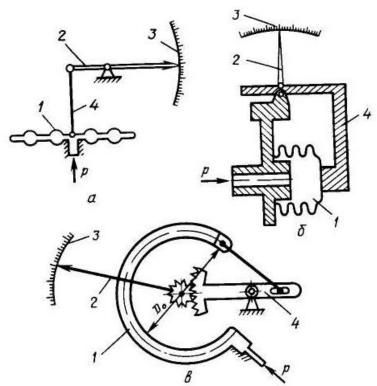


Рис. 2.2. Деформационные манометры: а) пружинный; б) сильфонный; в) трубчато-пружинный; 1 – измерительный элемент, 2 – указатель, 3 – шкала, 4 – рычаг

Аналогичны по устройству трубчатые вакуумметры и мановакуумметры.

2.3.2. Приборы для измерения расхода веществ

Очень удобен для непосредственного измерения расхода газов или прозрачных жидкостей ротаметр (рис. 2.3), являющийся расходомером обтекания. Перепад давления в нем сохраняется постоянным, а проходное сечение ротора (подвижного сопротивления), витающего в потоке измеряемой среды, изменяется прямо пропорционально расходу. В зависимости от скорости потока ротор устанавливается на определенной высоте в стеклянной конической (расширяющейся кверху) трубке ротаметра, показывая значение расхода на протарированной шкале. На цилиндрическом пояске ротора сделаны косые прорези для того, чтобы он, вращаясь под действием потока, центрировался в трубке прибора.

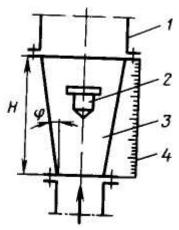


Рис. 2.3. Ротаметр: 1 – трубопровод; 2 – поплавок; 3 – корпус; 4 – шкала

Стеклянным ротаметром можно пользоваться в установках, имеющих вертикальные участки трубопроводов, если давление измеряемой среды не превышает 0,6 МПа, а температура не более 50°С. Изготавливаются и металлические ротаметры, более сложные по устройству. Показания ротора в них передаются на расстояние посредством электрической или пневматической системы передачи.

Расход жидкостей измеряют также при помощи скоростных счетчиков-расходомеров (рис 2.4a). Вращение крыльчатки или винтовой вертушки в них через редукторный механизм передается на счетчик прибора, показывающим расход жидкости (обычно в $m^3/4$).

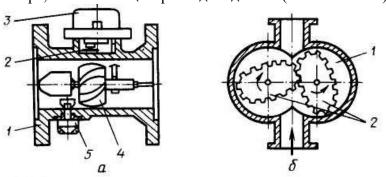


Рис. 2.4. Тахометрические расходомеры: а) турбинный: 1 — корпус, 2 — передаточный счетный механизм, 3 — тахогенератор, 4 — турбина, 5 — устройство для регулирования точности; б) камерный с овальными шестернями: 1 — камера, 2 — шестерни

Крыльчатые расходомеры применяют для измерения малых расходов жидкостей (до 9,5 $\mathrm{m}^3/\mathrm{q.}$).

Объемные счетчики (рис 2.4б) показывают суммарный расход вещества за данное время. Жидкость или газ приводит в движение поршень или овальные шестерни (у счетчиков жидкости), или роторы (у счетчиков газа), которые кинематически связаны с суммирующим счетным механизмом прибора.

Широко применяют в лабораторной практике и в производственных условиях измерения расхода жидкости с помощью мерных баков, оборудованных указательными стрелками и шкалами, градуированными в единицах массы или объема, а также различные весовые расходомеры. По разности показаний в начале и конце периода измерения определяют расход вешества.

2.4. Проведение работы

В ходе работы студенты знакомятся под руководством преподавателя с назначением и устройством измерительных приборов, принципами их действия, снимают показания приборов, установленных в лаборатории.

Отчет по работе должен включать цель работы, задачи работы, перечень и краткое описание основных способов измерения давления и расхода жидкостей и газов, схемы устройства основных приборов, запись выполненных измерений. Измеряемые величины сводятся в таблицу 2.1.

Таблица 2.1

Измеренные величины

Измерительный прибор	Единица измерения	Показания прибора

2.6. Контрольные вопросы

- 1. Дать определение давления газа. Какие виды давления бывают?
- 2. Используя схему рассказать принцип действия жидкостного манометра.
- 3. Что такое ротаметр, каков принцип его работы, в каких случаях он применяется?
- 4. Привести примеры пружинных манометров.