Лабораторная работа № 3

ИЗУЧЕНИЕ ЭЛЕКТРОМАГНИТНЫХ РЕЛЕ

Цель работы: Изучение конструкции и принципа действия электромагнитных реле, а также определение их основных параметров и характеристик.

Оборудование и приборы: различные виды реле, стенд для проведения исследований

4.1. Общие сведения

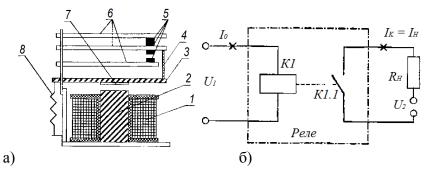
Любой технологический процесс сопровождается операциями включения, выключения, переключения различных агрегатов, оборудования и т.п., то есть осуществляется их коммутация. В качестве коммутирующих устройств используют переключатели и так называемые релейные устройства, или просто реле [7].

Основным свойством релейных устройств является способность *скачкообразно* изменять выходную величину при достижении входной величиной некоторого определенного значения - *порога срабатывания*.

Обычно реле классифицируют по физической природе источника энергии: электрические, гидравлические, пневматические и др., а также по физической величине, на которую они реагируют: тепловые, реле тока, времени и т.п.

Наиболее распространенными из электрических реле являются электромагнитные.

Электромагнитные реле могут не только выполнять простые функции коммутации, но и служить основой для построения схем автоматической блокировки, защиты, а также выполнять функции усилительных, преобразовательных (квантование по уровню) и исполнительных элементов в дискретных релейных системах автоматического регулирования.


4.2. Устройство и принцип действия электромагнитных реле

По роду управляющего тока электромагнитные реле подразделяются на реле постоянного и переменного тока.

Электромагнитные реле постоянного тока конструктивно выполняют *якорными* или *безъякорными*. По характеру реакции на изменение полярности питающего напряжения эти реле могут быть *нейтральными* или *поляризованными*.

Устройство простейшего нейтрального якорного реле показано на рисунке 4.1а.

Принцип работы электромагнитных реле нейтрального типа основывается на притяжении стального якоря 3 к сердечнику 2. Сердечник находится внутри катушки 1, по которой протекает ток. Электромагнитное поле, создаваемое катушкой 1, взаимодействует с ферромагнитным материалом якоря 3, притягивает его к сердечнику 2, преодолевая при этом действие возвратной пружины 8 и контактных пружин 6. Через изоляционную стойку 4 якорь 3 воздействует на контактные пружины 6, замыкая или размыкая контакты 5.

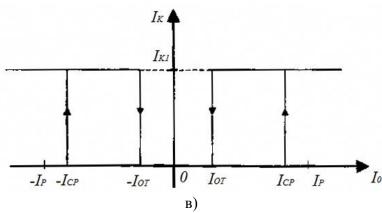


Рис. 4.1. Электромагнитное нейтральное реле:

а) конструкция; б) условное обозначение; в) статическая характеристика; 1 – катушка; 2 – сердечник; 3 – якорь; 4 – изоляционная стойка; 5 – контакты; 6 – контактные пружины; 7 – немагнитная прокладка; 8 – возвратная пружина

Для того, чтобы после выключения не было «залипания» якоря из-за остаточного намагничивания, на якоре укреплена немагнитная прокладка 7 из латуни или меди. Минимальный зазор между сердечником и якорем определяется толщиной этой прокладки $\Delta = 0.07...0.10$ мм.

Минимальное значение тока и соответствующее ему напряжение, при котором происходит срабатывание, называются током I_{CP} и напряжением U_{CP} срабатывания.

Если после срабатывания реле уменьшать ток, протекающий по катушке, то при определенном его значении якорь, а значит, и контакты, возвращаются в исходное состояние (реле отпускает).

Максимальное значение тока и соответствующее ему напряжение, при котором происходит отпускание реле, называются током I_{OT} и напряжением U_{OT} отпускания.

Аналогично нейтральное реле работает и при пропускании тока через обмотку в другом направлении, лишь бы он превосходил по модулю ток срабатывания I_{CP} .

Принцип действия *поляризованных реле* основан на взаимодействии магнитного потока электромагнита с потоком постоянного магнита. Конструкция якорного поляризованного реле показана на рисунке 4.2.

Магнитный поток Φ_0 , создаваемый постоянным магнитом, разветвляется по обеим половинам магнитопровода на потоки Φ_1 и Φ_2 . Когда якорь 1 (рис. 4.2) находится в среднем положении, то потоки Φ_1 и Φ_2 и создаваемые ими тяговые усилия равны между собой.

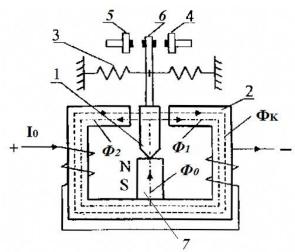


Рис. 4.2. Конструкция электромагнитного поляризованное реле: 1 – якорь; 2 – сердечник; 3 – возвратная пружина; 4 и 5 – неподвижные контакты; 6 – подвижный контакт; 7 – постоянный магнит

При прохождении тока по обмотке возникает магнитный поток $\Phi_{\rm K}$. В одной половине магнитопровода электромагнитный поток, создаваемый током в обмотке, направлен навстречу потоку постоянного магнита, а в другой — совпадает с потоком магнита. Тяговое усилие, создаваемое суммарным потоком $\Phi_{\rm K}$ + $\Phi_{\rm I}$ превышает усилие, создаваемое пружиной 3 и суммарным потоком $\Phi_{\rm K}$ - $\Phi_{\rm 2}$, поэтому якорь притянется к правому полюсу сердечника 2. Подвижный контакт 6 соединится с контактом 4.

При изменении полярности тока в обмотке изменяется и направление магнитного потока Φ_{K} . Это вызывает перемещение якоря в обратном направлении и, следовательно, размыкание контактов 4 и 6 и замыкание контактов 5 и 6.

Рис. 4.3. Условное изображение (a) и статическая характеристика (б) электромагнитного поляризованного реле

В последнее время широкое распространение получили безъякорные реле с магнитоуправляемыми контактами (рис. 4.4).

Контакты 1 реле данного типа помещаются в герметизированный стеклянный баллон 3, наполненный инертным газом для исключения возможности их окисления (обгорания), поэтому такие реле часто называют *герконовыми* или просто *герконами* (герметизированные контакты).

Контакты выполняются из ферромагнитного материала и являются упругими элементами При протекании тока достаточной величины ($I > I_{CP}$) через катушку 2, за счет намагничивания самих контактных пластин 1 (без участия якоря), создаются силы притяжения и контакты замыкаются При уменьшении тока до $I < I_{OTIT}$ под действием собственных упругих сил контакты возвращаются в исходное состояние.

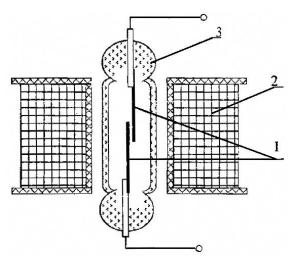


Рис. 4.4. Электромагнитное безъякорное реле с магнитоуправляемыми контактами (геркон): 1 – магнитные контакты; 2 – катушка; 3 – стекляный баллон

Так работают нейтральные безъякорные реле. Введение в магнитную цепь герконового реле постоянного магнита позволяет получить поляризованное безъякорное реле.

Устройство и принцип действия электромагнитных реле переменного тока аналогичны нейтральным реле постоянного тока. Только для повышения надежности работы таких реле необходимо исключить возможность отлипания якоря от сердечника в моменты перехода напряжения через ноль, что реализуется введением в магнитную систему особого витка, расщепляющего общий магнитный поток.

На электрических принципиальных схемах (рис. 4.16 и 4.3a) электромагнитные реле обозначают в виде прямоугольника K1 (катушка электромагнита) и контактов K1.1, K1.2 и т.д. (после точки — номер контактной группы). Механическую связь якорь-контакты (штриховая линия) на электрических схемах обычно не показывают.

4.3. Основные характеристики и параметры электромагнитных реле

Электромагнитные реле можно рассматривать в качестве активного четырехполюсника, если цепь обмотки принять за вход (управляющая цепь), а цепь, в которую включены контакты, за выход (управляемая цепь).

К основным характеристикам реле относятся статическая и динамические характеристики, а к параметрам коэффициент усиления по току, порог чувствительности, выходная мощность, время срабатывания и время отпускания.

Статические характеристики нейтральных и поляризованных реле изображены на рис. 4.1в и рис. 4.3б.

Они представляют зависимость тока контактов (нагрузки) I_K от тока обмотки I в статическом режиме.

Статическая характеристика показывает, что электромагнитное реле является нелинейным устройством и обладает гистерезисом. Ширина петли гистерезиса определяется коэффициентом возврата:

$$k_B = \frac{I_{OT}}{I_{CP}} \tag{4.1}$$

Для нелинейных устройств коэффициент передачи зависит от входного сигнала. Для практики важно знать коэффициент усиления по току, который имеет место для рабочего тока обмотки I_0 - I_P

$$k_I = \frac{I_K}{I_P} \tag{4.2}$$

где $I_P = k_{3A\Pi} \cdot I_{cp}$ — рабочий ток гарантированного надежного срабатывания реле; $k_{3A\Pi} = 1, 1... 1, 4$ — коэффициент запаса, зависящий от условий работы реле.

 ${\it Порог}$ чувствительности определяется мощностью срабатывания $P_{\it CP}$ – минимальной мощностью, которую необходимо подвести к обмотке реле для его срабатывания:

$$P_{CP} = I_{CP} \cdot U_{CP} \tag{4.3}$$

Поляризованные и герконовые реле относятся к высокочувствительным, $P_{CP} < 10$ мВт. У реле нормальной чувствительности мощность срабатывания $P_{CP} = 1...5$ Вт, а у реле низкой чувствительности $P_{CP} = 10...20$ Вт.

Габаритные размеры реле определяются главным образом мощностью, которую могут коммутировать контакты реле -выходной мощностью P_{BLIX} :

$$P_{RMX} = I_k^2 \cdot R_H \tag{4.4}$$

По величине этой мощности реле подразделяют на:

- сильноточные ($P_{BMX} > 500 \text{ Bt}$);
- нормальной мощности (150 Bт $< P_{BbIX} < 500$ Bт),
- слаботочные реле автоматики и связи $(P_{BMX} < 50 \text{ Br})$.

Реле с $P_{BMX} > 100$ Вт называют контакторами.

Для исследования динамических свойств реле его математическая модель составляется, исходя из статической характеристики с учетом времени запаздывания в появлении выходного сигнала $\tau_{31} = \tau_{CP}$ после подачи входного сигнала и, соответственно, времени запаздывания $\tau_{32} = \tau_{OTII}$ пропадания выходного сигнала при снятии входного.

Время срабатывания τ_{CP} и время отпускания τ_{OTH} реле характеризуют его быстродействие. Их конкретная величина определяется переходными процессами в обмотке реле (рис 4.5).

Время трогания реле можно определить по формуле:

$$\tau_{TP} = -T_1 \cdot ln(1 - \frac{I_{TP}}{I_p}) \tag{4.5}$$

где I_{TP} – ток обмотки в момент трогания;

 T_{I} – постоянная времени при начальном зазоре δ_{0} .

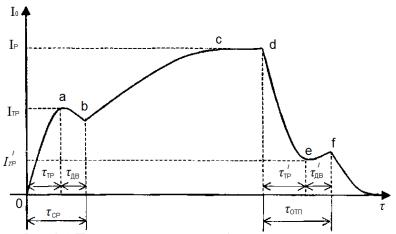


Рис. 4.5. Переходные процессы в обмотке электромагнитного реле

По переходному процессу (рис. 4.5) можно найти время срабатывания реле τ_{CP} которое складывается из времени трогания при срабатывании τ_{TP} и времени движения τ_{ZB} при срабатывании (от момента трогания до момента первого замыкания (размыкания) контакта:

$$\tau_{CP} = \tau_{TP} + \tau_{I\!IB} \tag{4.6}$$

Обычно $\tau_{IB} = (0,1...0,4) \tau_{TP}$.

Для нахождения времени отпускания τ_{OT} надо снять переходной процесс при размыкании цепи питания обмотки (участок de на рис. 4.5). Время отпускания будет равно:

$$\tau_{\rm OTII} = \tau_{TP} + \tau_{IB} \tag{4.7}$$

где $au_{\mathcal{AB}}'$ – время движения при отпускании от момента трогания до момента размыкания (замыкания) контактов;

 $au_{TP}^{\ \ \ }$ – время трогания при отпускании реле:

$$\tau_{TP}^{\prime} = T_2 \cdot ln \left(1 - \frac{I_p}{I_{TP}^{\prime}}\right)$$
 (4.8)

По быстродействию (при $\tau = \tau_{CP} = \tau_{OTH}$) реле можно разделить на безынерционные ($\tau < 0.001$ с), быстродействующие ($\tau < 0.05$ с), нормальные (0.05 с $< \tau < 0.015$ с) и замедленные ($\tau > 0.15$ с).

Однако часто $au_{CP} \neq au_{OTH}$ и по разным составляющим быстродействия реле могут попасть в разные классы.

Быстродействие электромагнитных реле можно изменять механическим и электрическим способами.

Первый из них заключается в изменении жесткости возвратной пружины или исходного расстояния между якорем и сердечником.

Второй в применении элементов, изменяющих постоянную времени обмотки реле, обладающей индуктивностью

Так, например, наличие добавочного резистора $R_{\mathcal{I}}$ (рис. 4.6а) при одновременном повышении напряжения питания обмотки приводит к ускорению срабатывания реле ($\tau = L_0/R$). Шунтирование конденсатором этого резистора (рис.4.66) еще больше уменьшает время срабатывания. Включение же конденсатора параллельно обмотке (рис.4.6в) позволяет увеличить время срабатывания и отпускания, т.е. уменьшить его быстродействие.

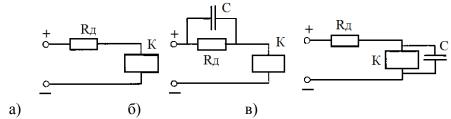


Рис. 4.6. Электрические методы изменения быстродействия электромагнитных реле

4.4. Описание лабораторного стенда

Лабораторная установка для проведения исследований реле состоит из специальной панели, которая обеспечивает набор электрических схем A и B (рис. 4.7).

Схема A позволяет снимать статические характеристики $I_K=f(I_0)$ трёх реле различного типа (K1, K2, K3 с соответствующими контактами K1.1, K2.1, K4.1 и K4.2).

Реле K1 (РЭС-22) и K2 (РЭС-9) — нейтрального типа, а реле K3 (РПС5-30Я) — поляризованное трехпозиционное.

K схеме A относятся также:

- тумблер SA1 для подключения схемы A1;
- тумблеры SA2, SA3 и SA7 для подключения соответствующих исследуемых реле;
- переключатель SA6 для изменения полярности питающего напряжения,
- потенциометр $R_{\it \Pi}$ обеспечивает плавное изменение величины подводимого напряжения;
 - индикаторные лампы *HL1* и *HL2*;
 - резистор нагрузки R_H ;
 - балластный резистор R1 для ограничения тока реле K3;

источник питания (ИП).

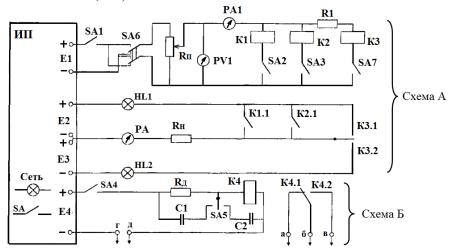


Рис. 4.7. Схема лабораторной установки

Токи, протекающие по обмоткам реле (I_{CP} и I_{OTII}), измеряются амперметром PA1, а ток I_K , протекающий через контакты реле и нагрузку, - амперметром PA2. Напряжение, подводимое к обмоткам реле, измеряется вольтметром PV. Все указанные приборы являются универсальными цифровыми.

Схема Б позволяет определить временные параметры реле K4 (РЭС-22) нейтрального типа и исследовать два способа изменения его быстродействия (рис. 4.66 и 4.68).

В левом положении трёхпозиционный переключатель SA5 подключает конденсатор C1 параллельно добавочному резистору $R_{\mathcal{A}}$, в правом положении конденсатор C2 параллельно обмотке реле.

Время срабатывания и отпускания реле определяется с помощью измерителя временных параметров реле типа Ф291.

Для измерения используются следующие органы управления этого прибора:

- кнопочный переключатель «Режим»;
- выключатель питания реле «Пуск»;
- кнопка «СБР» (сброс).

Кнопочный переключатель «Режим» служит для выполнения коммутаций схемы прибора в зависимости от типа измеряемого параметра ($\tau_{\rm CP}$ или $\tau_{\it OTH}$) и типа контактов (размыкающие или замыкающие) исследуемого реле.

Клеммы «г» и «д» схемы \vec{B} присоединяются к клеммам 1 и 2 источника питания ИП. Замыкающие K4.1 или размыкающие K4.2 контакты реле K4 через гнезда «а», «б», «в» подсоединяются к клеммам 3 и 4 ИП.

В таблице 4.1 указаны положения органов управления установки в зависимости от измеряемого временного параметра и типа контактов.

Для измерения конкретного временного параметра необходимо сначала установить кнопку «Режим» в соответствующее положение (табл. 4.1).

Таблица 4.1

	Положение	органов упра	авления		
Измеряемые временные параметры	Переключатель	Выключатель «Пуск»			
	"Режим»	исходное	конечное		
1 Время срабатывания реле					
а) с размыкающими контактами (а,б)	2	Вниз	Вверх		
б) с замыкающими контактами (б,в)	1	Вниз	Вверх		
2.Время отпускания реле					
а) с размыкающими контактами (а,б)	4	Вверх	Вниз		
б) с замыкающими контактами (б,в)	3	Вверх	Вниз		

Затем поставить переключатель «Пуск» в исходное положение. Осуществить сброс показаний прибора кнопкой «СБР» и в последнюю очередь перевести переключатель «Пуск» из указанного в таблице исходного положения в конечное.

Измеритель параметров реле Ф291 работает следующим образом. Например, при измерении времени срабатывания реле с замыкающими контактами выключателем «Питание реле» подается напряжение к обмотке реле и одновременно запускается его миллисекундомер. При замыкании контактов реле происходит остановка миллисекундомера и на шкале индицируется время срабатывания.

4.5. Порядок выполнения работы

- 1. Ознакомиться с принципом действия электромагнитных реле различного типа, расположенных на специальной подставке.
- 2. С помощью тумблера SA подключить измерительный стенд к сети, а тумблером SA1 включить схему A.
- 3. Заполнить таблицу 4.2 для трех реле K1...K3, подключая их по очереди тумблерами SA2, SA3, SA7 и изменяя полярность напряжения, приложенного к обмоткам реле, переключателем SA6.

Таблица 4.2

	Измеряемые величины									Pac	Расчетные величины				
Реле	I_{CP} , mA		U_{CP} , B		<i>I_K</i> , мА		<i>I_{OT}</i> , мА		U_{OT} , B		I_P , MA	k_B	$P_{CP}, \ \mathrm{MBT}$	$P_{BbIX}, \ \mathrm{MBT}$	k_I
Д	+E1	-E1	+E1	-E1	+E1	-E1	+E1	-E1	+E1	-E1	+E1	+E1	+E1	+E1	+E1
К1															
К2															
К3															

Для реле КЗ в чистовик таблицы необходимо занести значения:

$$U_{CP} = U_I - I_{CP} \cdot R_I, \tag{4.9}$$

$$U_{OT} = U_I - I_{OT} \cdot R_I, \tag{4.10}$$

где U_I – напряжение, измеренное вольтметром PV; $R_I = 10$ кОм.

4. Тумблером SA4 подключить схему Б. С помощью схемы Б измерить время срабатывания и отпускания реле K4 с замыкающими K4.1 и размыкающими K4.2 контактами для трех положений переключателя SA5.

С целью усреднения получаемых результатов каждое измерение повторять не менее трех раз. Данные измерений занести в таблицу 4.3

Таблица 4.3

		$ au_{\scriptscriptstyle CI}$	$ au_{OT\Pi}$, мс						
Тип контактов	Положение <i>SA5</i>								
	среднее	налево	направо	среднее	налево	направо			
Реле с									
размыкающими									
контактами									
Среднее арифм.									
значение									
Реле с									
замыкающими									
контактами									
Среднее арифм.									
значение									

4.5. Обработка полученных результатов.

По данным таблицы 4.2 построить в масштабе статические характеристики трех реле K1...K4. Рассчитать основные параметры реле K1...K3 (P_{BblX} при $R_H = 250$ Ом) и занести их в таблицу 4.2. Рассчитать среднеарифметическое значение τ_{CP} и τ_{OTII} для всех опытов таблицы 4.4.

4.6. Содержание отчета

- 1. Цель работы.
- 2. Схемы, поясняющие принцип действия нейтральных и поляризованных реле.
- 3. Таблицы 4.2 и 4.3 с экспериментальными и расчетными величинами.
- 4. Статические характеристики реле К1...К4.
- 5. Выводы по чувствительности, мощности и быстродействию исследованных реле

4.7. Контрольные вопросы

- 1. Общее понятие о релейных устройствах. Область их применения в автоматических системах.
 - 2. Классификация электромагнитных реле.
- 3. Принцип действия электромагнитных реле различного типа (нейтральных, поляризованных и герконовых).
 - 4. Что такое статическая характеристика электромагнитных реле?
 - 5. Дать определение основных параметров электромагнитных реле.
 - 6. Оценка быстродействия электромагнитных реле и способы его изменения.