«ОБЩИЕ СВЕДЕНИЯ О КОМПЬЮТЕРНОЙ ГРАФИКЕ»

Цель: рассмотреть  общие сведения, задачи и принципы о компьютерной графики.

Задачи:

- познакомиться с историческими сведениями о компьютерной графике;

- изучить методы представления компьютерной графики, разрешение и размер изображения, форматы графических файлов;

-  получить представления о цвете в компьютере.

 План:

  1. Компьютерная графика. История появления и области её применения
  2. Методы представления графических объектов
  3. Разрешение и размер изображения
  4. Представление цвета в компьютере. Цветовые модели
  5. Форматы графических файлов: PSD, TIFF, BMP, JPEG, GIF, WMF,

CDR, AI.

    1. Компьютерная графика. История появления и области её применения

 Более 90% информации здоровый человек получает через зрение или ассоциирует с геометрическими пространственными представлениями. Компьютерная графика имеет огромный потенциал для облегчения процесса познания и творчества, она позволяет развивать у учащихся пространственное воображение, практическое понимание, художественный вкус.

Понятие «компьютерная графика» очень часто трактуется по-разному. Из одних источников компьютерная графика - это область информатики, занимающаяся проблемами получения различных изображений (рисунков, чертежей, мультипликации) на компьютере. С другой стороны, под компьютерной графикой понимают совокупность методов и приемов для преобразования при помощи ПК данных в графическое представление. А по мнению художника М. В. Кудерского , члена Союза художников России, компьютерная графика - это вид искусства. Причем по творческим затратам, как он считает, создание произведения искусства средствами компьютерной графики даже более трудоемкое дело,  чем обычная работа живописца.

Вообще, в широком смысле слова, компьютерная графика - это все, для чего используется визуальная, образная среда отображения на мониторе. Если сузить понятие до практического использования, под компьютерной графикой будет пониматься процесс создания, обработки и вывода изображений разного рода с помощью компьютера.

Работа с компьютерной графикой - одно из самых популярных направлений использования персонального компьютера, причем занимаются этой работой не только профессиональные художники и дизайнеры. На любом предприятии время от времени возникает необходимость в подаче рекламных объявлений в газеты и журналы, в выпуске рекламной листовки или буклета. Иногда предприятия заказывают такую работу специальным дизайнерским бюро или рекламным агентствам. Без компьютерной графики не обходится ни одна современная программа. Работа над графикой занимает до 90% рабочего времени программистских коллективов, выпускающих программы массового применения. Основные трудозатраты в работе редакций и издательств тоже составляют художественные и оформительские работы с графическими программами. Необходимость широкого использования графических программных средств стала особенно ощутимой в связи с развитием Интернета и, в первую очередь, благодаря службе World Wide Web, связавшей в единую "паутину" миллионы "домашних страниц".

Можно считать, что первые системы машинной графики (кодирования графических объектов) появились вместе с первыми цифровыми компьютерами. Формирование машинной графики как самостоятельного направления относится к началу 60-х годов. Были сформулированы принципы рисования отрезками, удаления невидимых линий, методы отображения сложных поверхностей, определены методы формирования теней, учета освещенности сюжета.

В  середине 1960-х  была разработана цифровая электронная чертежная машина (фирма Itek). В 1964 году General Motors представила свою DAC-1 - систему автоматизированного проектирования, разработанную совместно с IBM.

 В 70-е годы значительное число теоретических и прикладных работ было направлено на развитие методов отображения пространственных форм и объектов. Это направление принято называть трехмерной машинной графикой. Математическое моделирование трехмерных сюжетов требует учета трехмерности пространства предметов, расположения в нем источников освещения и наблюдения, это определило необходимость разработки методов представления сложных поверхностей, генерирования текстур, рельефа, моделирования условий освещения.

 Методы  трехмерной машинной графики позволяют визуализировать сложные функциональные зависимости, получать изображение проектируемых, еще не созданных объектов, оценить облик предмета из недоступной для наблюдения позиции и решить ряд подобных задач. 

У первых поколений ЭВМ вообще не было дисплея. Вся информация загружалась в огромные ламповые монстры на бумажных носителях (перфолентах и перфокартах), результат также выдавался на бумагу. Однако рост мощности компьютеров и сложности расчетов привели к необходимости разработки более удобного способа общения с машиной. В результате было найдено решение — дисплей.

Долгое время дисплеи были сугубо текстовыми — то есть ничего кроме цифр, а позднее букв, они выводить не могли. Но уже тогда было понятно, что для удобства работы необходима возможность вывода изображений на экран дисплея. В 80-е годы появились персональные компьютеры, позволяющие выводить графические объекты на экраны мониторов, что позволило использовать машинную графику в качестве инструмента специалистам различных областей, не связанных с программированием.

Увеличение памяти и скорости обработки информации в персональных ЭВМ, создание видеокомплексов с широким набором программ машинной графики, возможность управления ими в диалоговом режиме способствовали дальнейшему расширению применения машинной графики. Важную, практически определяющую роль в этом процессе сыграл выпуск компанией Apple компьютеров Macintosh (1984г.). Они были для своего времени настоящей революцией. Во-первых, Macintosh серийно поставлялся с цветным монитором. Во-вторых, его операционная система обладала наглядным, визуальным интерфейсом (своего рода аналог более поздней ОС Windows).  И в-третьих, их мощности было достаточно для обработки графических изображений. Именно поэтому Macintosh сразу заслужил внимание множества профессиональных художников и дизайнеров, которые поменяли карандаш и кисть на мышь и клавиатуру.

Рынок не заставил себя долго ждать — появилось несколько очень впечатляющих для своего времени графических редакторов. Сегодня любой человек, работающий в сфере полиграфии и, тем более, веб-дизайна, просто не может не владеть основными графическими пакетами. Даже художники оцифровывают свои работы и проводят дополнительную коррекцию уже на компьютере. Фотографы, которые работают только с пленочной камерой, также встречаются все реже. Компьютерная графика прочно вошла в нашу жизнь. Появляется все больше клипов, сделанных с помощью компьютерной графики. Нет спору, компьютерная графика расширяет выразительные возможности. При творческом ее использовании реклама приобретает удивительную силу воздействия на зрителя. С помощью одной только компьютерной графики очень трудно донести до зрителя рекламную идею. И если в клипе лишь компьютерная графика, лишь созданный ее средствами сюрреалистический мир, то зритель остается холодным, хотя увиденное и поражает воображение. Ведь известно, что реклама наиболее эффективна тогда, когда потребителю хочется идентифицировать себя с человеком, пользующимся тем или иным товаром. Процесс узнаваемости себя в клипе - залог успеха.  Компьютерная или машинная графика - это вполне самостоятельная область человеческой деятельности, со своими проблемами и спецификой. Компьютерная графика - это и новые эффективные технические средства для проектировщиков, конструкторов и исследователей, и программные системы и машинные языки, и новые научные, учебные дисциплины, родившиеся на базе синтеза таких наук как аналитическая, прикладная и начертательная геометрии, программирование для ПК, методы вычислительной математики и т.п. Машина наглядно изображает такие сложные геометрические объекты, которые раньше математики даже не пытались изобразить. Само понятие "компьютерная графика" уже достаточно известно - это создание рисунков и чертежей с помощью компьютера.

 А вот компьютерная анимация - это несколько более широкое явление, сочетающее компьютерный рисунок (или моделирование) с движением. Вообще же "анимацией" просвещенный мир называет тот  вид искусства, который у нас в России зовется мультипликацией. "Animate" - по-английски и по-французски значит "оживлять", "воодушевлять". "Animation" - это оживление или воодушевление. Кстати, слово "реанимация" - того же происхождения: "ре" "повторное", "анимация" - "оживление". Дело в том, что привычное слово "мультипликация" - от английского "multiplication" (умножение), совсем не отражает ни сущность, ни технологию мультфильмов. Итак, компьютерная анимация - это анимация, созданная при помощи компьютера. 

Под графической информацией понимаются модели объектов и их изображения. Интерактивная компьютерная графика - это так же использование компьютеров для подготовки и воспроизведения изображений, но при этом пользователь имеет возможность оперативно вносить изменения в изображение непосредственно в процессе его воспроизведения, т.е. предполагается возможность работы с графикой в режиме диалога в реальном масштабе времени. Интерактивная графика представляет собой важный раздел компьютерной графики, когда пользователь имеет возможность динамически управлять содержимым изображения, его формой, размером и цветом на поверхности дисплея с помощью интерактивных устройств управления.

 

2. Методы представления графических объектов 

В зависимости от организации работы графической системы

Пассивная\не интерактивная – это организация работы графической системы, при которой дисплей используется только для вывода изображения под управлением программы без вмешательства пользователя. Графическое представление после получения не может быть изменено.

Активная\интерактивная (динамическая, диалоговая) – это воспроизведение на экране изображений под управлением пользователя.

 

В зависимости от способа формирования изображения

Растровая графика – это графика, где изображение представляется двумерным массивом точек, которые являются элементами растра. Растр – это двумерный массив точек (пикселей), упорядоченных в строки и столбцы, предназначенных для представления изображения путем окраски каждой точки в определенный цвет.

Векторная графика – метод построения изображений, где используются математические описания для определения положения, длины и координаты выводимых линий.

Фрактальная графика – напрямую связана с векторной. Как и векторная, фрактальная графика вычисляемая, но отличается тем, что никакие объекты в памяти компьютера не хранятся.

 

3D-графика.

 

В зависимости от цветового охвата различают

Черно-белую

Цветную графики.

В зависимости от способов показа изображения

Иллюстративная графика – способ изображения графического материала.

Демонстративная графика – связана с динамическими объектами.

Средства создания и обработки демонстративной графики подразделяют на анимацию (двухмерную и трехмерную), обработку и вывод живого видео и разнообразные специальные обработчики видеоматериалов.

В зависимости от способов применения

Научная графика – вывод графиков на плоскости и в пространстве, решение систем уравнений, графическая интерпретация

Инженерная графика (системы автоматизации проектных работ) – различные применения в машиностроении, в проектировании печатных плат, архитектуре и т.д.

Деловая графика – построение графиков, диаграмм, создание рекламных роликов, демонстраторов.

Понятие деловой графики включает методы и средства графической интерпретации научной и деловой информации: таблицы, схемы, диаграммы, иллюстрации, чертежи.

В среде MS Office имеются встроенные инструменты для создания деловой графики: графический редактор Paint, средство MS Graph, диаграммы MS Excel.

 

Компьютерная графика подразделяется на: - статичную (неподвижная)  - динамичную (анимация, компьютерная мультипликация). Каждая из которых в свою очередь делится на 2-х мерную и 3-х мерную.

В зависимости от способа формирования изображений, компьютерную графику принято делить на: растровую; векторную; фрактальную. Отдельным предметом считается трехмерная графика, изучающая приемы и методы построения объемных моделей объектов в виртуальном пространстве.

Растровая графика - машинная графика, в которой изображение представляется двумерным массивом точек (элементов растра), цвет и яркость каждой из которых задается независимо. Растр (растровый массив) – представление изображения в виде двумерного массива точек, упорядоченных в ряды и столбцы. Для каждой точки растра указывается цвет и яркость. Пиксель – элемент (точка) растра (pixel – сокращение от слов picture element, т.е. элемент изображения), минимальная единица изображения, цвет и яркость котороЙ можно задать независимо от остального изображения. Пиксель - основной элемент, кирпичик всех растровых изображений.  Термином пиксель кроме отдельного элемента растрового изображения отображают также отдельную точку на изображении, отдельную точку на экране компьютера, отдельную точку на изображении, напечатанном на принтере.

Обычно используют термины:

- пиксель - при ссылке на отдельный элемент растрового изображения;

 - видеопиксель - при ссылке на элемент изображения экрана компьютера;

 - точка - при ссылке на отдельную точку, создаваемую на бумаге.

Хорошее растровое изображение выглядит реально и естественно Растровое изображение наиболее адаптировано для распространенных растровых устройств вывода - лазерных принтеров и др. Занимают большой объем памяти. Редактирование больших растровых изображений, занимающих большие массивы памяти, требуют большие ресурсы компьютера и, следовательно, требуют большего времени. Трудоемкий процесс редактирования растровых изображений. При увеличении размеров изображения сильно ухудшается качество.

Векторная графика описывает изображение с помощью математических формул. По своей сути любое изображение можно разложить на множество простых объектов, как то - контуры, графические примитивы и т.д. Любой такой простой объект состоит из контура и заливки.  Основное преимущество векторной графики (рис. состоит в том, что при изменении масштаба изображения оно не теряет своего качества. Отсюда следует и другой вывод - при изменении размеров изображения не изменяется размер файла. Ведь формулы, описывающие изображение, остаются те же, меняется только коэффициент пропорциональности. С другой стороны, такой способ хранения информации имеет и свои недостатки. Например, если делать очень сложную геометрическую фигуру (особенно если их много), то размер "векторного" файла может быть гораздо больше, чем его "растровый" аналог из-за сложности формул, описывающих такое изображение. Из всего вышесказанного можно сделать вывод, что векторную графику следует применять для изображений, не имеющих большого числа цветовых фонов, полутонов и оттенков. Векторную графику часто называют объектно-ориентированной графикой или чертежной графикой. Простые объекты, такие как окружности, линии, сферы, кубы, заполнители (области однотонного или изменяющегося цвета для заполнения частей объектов) и т.п., называются примитивами и используются при создании более сложных объектов. В векторной графике изображения создаются путем комбинации различных объектов. Существуют программы поддерживающие оба типа объектов и позволяют работать как с растровым так и с векторным изображением одновременно, хотя форматы растровых файлов описывают растровые изображения более эффективно.   Цвет объекта хранится в виде части его векторного описания. Векторные изображения выглядят искусственно. Легко масштабировать, но меньше оттенков и полутонов чем в растровой графике.

Фрактальная графика, как и векторная, основана на математических вычислениях. Базовым элементом фрактальной графики является сама математическая формула, т.е. никаких объектов в памяти компьютера не хранится и изображение строится исключительно по уравнениям. Таким образом, строят как простейшие регулярные структуры, так и сложные иллюстрации, имитирующие природные ландшафты и трехмерные объекты. Фрактальная графика, как и векторная - вычисляемая, но отличается от неё тем, что никакие объекты в памяти компьютера не хранятся. Изображение строится по уравнению (или по системе уравнений), поэтому ничего, кроме формулы, хранить не надо. Изменив коэффициенты в уравнении, можно получить совершенно другую картину. Способность фрактальной графики моделировать образы живой природы вычислительным путем часто используют для автоматической генерации необычных иллюстраций.

          3. Разрешение и размер изображения

 Разрешение - это степень детализации изображения, число пикселей, отводимых на единицу площади. Поэтому имеет смысл говорить о разрешении изображения только применительно к какому-либо устройству ввода или вывода изображения. Например, пока имеется обычная фотография на твердом носителе, нельзя сказать о ее разрешении. Но как только мы попытаемся ввести эту фотографию в компьютер через сканер, нам необходимо будет определить разрешение оригинала, т. е. указать количество точек, считываемых сканером с одного квадратного дюйма.

Следует четко различать разрешение экрана, разрешение печатающего устройства и разрешение изображения. Все эти понятия относятся к разным объектам. Друг с другом эти виды разрешения никак не связаны.

Разрешение экрана – это свойство компьютерной системы (зависит от монитора и видеокарты) и операционной системы (например, зависит от настроек Windows). Разрешение экрана измеряется в пикселях и определяет размер изображения, которое может поместиться на экране целиком. Экранное разрешение – 72 пиксела на дюйм.

Разрешение принтера - это свойство принтера, выражающее количество отдельных точек, которые могут быть напечатаны на участке единичной длины. Оно измеряется в единицах dpi (сокр. dpi - dot per inch - точки на дюйм) и определяет размер изображения при заданном качестве или, наоборот, качество изображения при заданном размере.

Разрешение изображения — это свойство самого изображения. Оно тоже измеряется в точках на дюйм и задается при создании изображения в графическом редакторе или с помощью сканера. Чем больше разрешение изображения, тем больше величина файла изображения. Для Web используется экранное разрещение – 72 dpi. Значение разрешения изображения хранится в файле изображения и неразрывно связано с другим свойством изображения - его физическим размером.

Физический размер изображения может измеряться как в пикселях, так и в единицах длины (миллиметрах, сантиметрах, дюймах). Он задается при создании изображения и хранится вместе с файлом. Если изображение готовят для демонстрации на экране, то его ширину и высоту задают в пикселях, чтобы знать, какую часть экрана оно занимает. Если изображение готовят для печати, то его размер задают в единицах длины, чтобы знать, какую часть листа бумаги оно займет. 

4. Представление цвета в компьютере. Цветовые модели

 Каждый пиксель растрового изображения содержит информацию о цвете. Представление информации в компьютере основывается на двоичной системе счисления. Минимальный размер цветовой информации в пикселе – 1 бит, т.е. в простейшем случае пиксели на экране могут быть «включены» или «выключены», представляя собой белый и черный цвет. Количество оттенков, которые может воспроизводить отдельный пиксель определяется глубиной цвета (максимум - 32 бита), позволяющей показывать на экране монитора до 16,7 млн. цветовых оттенков.

К полноцветным (true color) относятся типы изображений с глубиной цвета не менее 24 бит, то есть каждый пиксель такого изображения кодируется как минимум 24 битами, что дает возможность отобразить не менее 16,7 миллиона оттенков. Поэтому иногда полноцветные типы изображения называют True Color (истинный цвет). 

Если мы работаем с черно-белыми изображениями, то цвет кодируется нулем или единицей. Никаких проблем в этом случае не возникает.

Для изображений в истинном цвете, содержащих миллионы разных оттенков, простая нумерация не подходит. Для них разработаны несколько моделей представления цвета.

Цветовые модели позволяют с помощью математического аппарата описать определенные цветовые области спектра.  Цветовая модель (режим) представляет собой правило обозначения цветов пикселей документа. Наиболее распространенными цветовыми моделями являются:

- битовый – 2 цвета – черный и белый;

- cерый – 256 градаций серого;

- RGB – red, green, blue – красный, зеленый, синий;

- CMYK – Cyan, Magenta, Yellow, blacK – голубой, пурпурный, желтый, черный.

Цвета в природе редко являются простыми. Большинство цветовых оттенков образуется смешением основных цветов. Способ разделения цветового оттенка на составляющие называется цветовой моделью. Существует много различных типов цветовых моделей, но в компьютерной графике, как правило, применяется не более трех. Эти модели известны под названиями RGB, CMYK и HSB.

Цвет – один из факторов нашего восприятия светового излучения. Для характеристики цвета используются следующие атрибуты.

Цветовой тон. Можно определить преобладающей длиной волны в спектре излучения. Цветовой тон позволяет отличить один цвет от другого, например, зеленый от красного, желтого и других.

Яркость. Определяется энергией, интенсивностью светового излучения. Выражает количество воспринимаемого света.

Насыщенность или чистота тона. Выражается долей присутствия белого цвета. В идеально чистом цвете примесь белого отсутствует. Если, например, к чистому красному цвету добавить в определенной пропорции белый цвет (у художников это называется разбелом), то получится светлый бледно-красный цвет.

Указанные три атрибута позволяют описать все цвета и оттенки. То, что атрибутов именно три, является одним из проявлений трехмерных свойств цвета. Наука, которая изучает цвет и его измерения, называется колориметрией. Она описывает общие закономерности цветового восприятия света человеком.

Одними из основных законов колориметрии являются законы смешивания цветов. Эти законы в наиболее полном виде были сформулированы в 1853 г. немецким математиком Германом Грассманом:

  1. Цвет трехмерен - для его описания необходимы три компоненты. Любые четыре цвета находятся в линейной зависимости, хотя существует неограниченное число линейно независимых совокупностей из трех цветов.

Иными словами, для любого заданного цвета (Ц) можно записать такое цветовое уравнение, выражающее линейную зависимость цветов:

 Ц = к1 Ц1 + к2 Ц2 + к3 Ц3,

 где Ц1, Ц2, Ц3 – некоторые базисные, линейно независимые цвета, коэффициенты к1, к2, и к3 – количество соответствующего смешиваемого цвета. Линейная независимость цветов Ц1, Ц2, Ц3 означает, что ни один из них не может быть выражен взвешенной суммой (линейной комбинацией) двух других.

Для описания излучаемого и отраженного цвета используются разные математические модели. Их называют цветовыми моделями. В каждой модели определенный диапазон цветов представляют в виде 3D пространства. В этом пространстве каждый цвет существует в виде набора числовых координат. Этот метод дает возможность передавать цветовую информацию между компьютерами, программами и периферийными устройствами.

Цветовые модели могут быть аппаратно-зависимыми (их пока большинство, RGB и CMYK в их числе) и аппаратно-независимыми (модель Lab). В большинстве "современных" визуализационных пакетов (например, в Photoshop) можно преобразовывать изображение из одной цветовой модели в другую.

Основные цветовые модели:

 RGB

  • CMY (Cyan Magenta Yellow)
  • CMYK (Cyan Magenta Yellow Key, причем Key означает черный цвет)
  • HSB
  • Lab
  • HSV (Hue, Saturation, Value)
  • HLS (Hue, Lightness, Saturation) и другие

RGB.

Эта модель используется для описания цветов, которые получаются с помощью устройств, основанных на принципе излучения. В этой модели работают мониторы и бытовые телевизоры. Любой цвет считается состоящим из трех основных компонентов: красного (Red), зеленого (Green) и синего (Blue). Эти цвета называются основными. Считается также, что при наложении одного компонента на другой яркость суммарного цвета увеличивается. Совмещение трех компонентов дает нейтральный цвет (серый), который при большой яркости стремится к белому.

К настоящему времени система RGB является официальным стандартом. Решением Международной комиссии по освещению – МКО (CIE – Commision International de l'Eclairage) – в 1931 г. были стандартизированы основные цвета, которые рекомендовано использовать в качестве R, G и B. Это монохроматические цвета светового излучения с длинами волн соответственно: R – 700 нм; G – 546,1 нм; B – 435,8 нм.

Еще одним важным параметром для системы RGB является цвет, получаемый смешением трех компонентов в равных количествах. Это белый цвет. Оказывается, для того, чтобы смешиванием компонентов R, G и B получить белый цвет, яркости соответствующих источников должны быть не равны друг другу, а находиться в пропорции LR : LG : LB = 1 : 4,5907 : 0,0601

Кроме того, одной из гипотез, объясняющих цветовое зрение человека, является трехкомпонентная теория, которая утверждает, что в зрительной системе человека есть три типа светочувствительных элементов. Один тип реагирует на зеленый, другой – на красный, а третий – на синий цвет. Такая гипотеза высказывалась еще Ломоносовым, ее обоснованием занимались многие ученые, начиная с Т.Юнга. Впрочем, трехкомпонентная теория не является единственной теорией цветового зрения человека.

Модель является аппаратно-зависимой, так как значения базовых цветов (а также точка белого) определяются качеством примененного в вашем мониторе люминофора. В результате на разных мониторах одно и то же изображение выглядит неодинаково.

 CMYK.

Эта цветовая модель используется для описания цвета при получении изображений на устройствах, которые реализуют принцип поглощения (вычитания) цветов.

Эту модель используют для подготовки не экранных, а печатных изображений. Они отличаются тем, что их видят не в проходящем, а в отраженном свете. Чем больше краски положено на бумагу, тем больше света она поглощает и меньше отражает. Совмещение трех основных красок поглощает почти весь падающий свет, и со стороны изображение выглядит почти черным, рис. 4. В отличие от модели RGB увеличение количества краски приводит не к увеличению визуальной яркости, а, наоборот, к ее уменьшению. Поэтому для подготовки печатных изображений используется не аддитивная(суммирующая) модель, а субтрактивная (вычитающая). Цветовыми компонентами этой модели являются не основные цвета, а те, которые получаются в результате вычитания основных цветов из белого:

Голубой (Cyan) = Белый - Красный = Зеленый + Синий

Пурпурный (Magenta) = Белый - Зеленый = Красный + Синий

Желтый (Yellow) = Белый - Синий = Красный + Зеленый

Существенную трудность в полиграфии представляет черный цвет. Теоретически его можно получить совмещением трех основных или дополнительных красок, но на практике результат оказывается неудовлетворительным. Поэтому в цветовую модель CMYK добавлен четвертый компонент - черный. Ему эта система обязана буквой K в названии (blacK).

Данная модель является основной для полиграфии и также является аппаратно-зависимой.

Цветоделение. В типографиях цветные изображения печатают в несколько приемов. Накладывая на бумагу по очереди голубой, пурпурный, желтый и черный отпечатки, получают полноцветную иллюстрацию. Поэтому готовое изображение, полученное на компьютере, перед печатью разделяют на четыре составляющих одноцветных изображения. Этот процесс называется цветоделением. Современные графические редакторы имеют средства для выполнения этой операции.

 

Графические редакторы позволяют работать с цветным изображением в разных цветовых моделях, но все-таки модель RGB для компьютера "ближе". Это связано с методом кодирования цвета байтами. Поэтому создавать и обрабатывать цветные изображения принято в модели RGB, а при выполнении цветоделения рисунок преобразовывают в модель CMYK. При печати рисунка RGB на цветном четырехцветном принтере драйвер принтера также преобразует рисунок в цветовую модель CMYK.

 

Цветовые профили. Изложенные выше теории восприятия и воспроизведения цвета на практике используются с серьезными поправками. Образованный в 1993 г. Международный консорциум по цвету (ICC) разработал и стандартизировал системы управления цветом (Color Management System, CMS). Такие системы призваны обеспечить постоянство цвета на всех этапах работы для любых устройств, учитывая особенности конкретных устройств при воспроизведении цвета.

В реальности не существует устройств с цветовым охватом, полностью совпадающим с моделями RGB, CMYK, CIE и любыми другими. Поэтому для приведения возможностей устройств к некоторому общему знаменателю были разработаны цветовые профили.

Цветовой профиль – средство описания параметров цветовоспроизведения.

В компьютерной графике всякая работа начинается в пространстве RGB, поскольку монитор физически излучает эти цвета. По инициативе компаний Microsoft и Hewlett Packard была принята стандартная модель sRGB, соответствующая цветовому охвату монитора среднего качества. В таком цветовом пространстве должна без проблем воспроизводиться графика на большинстве компьютеров. Но эта модель весьма упрощенная, и ее цветовой охват существенно уже, чем у качественных мониторов.

В настоящее время практически повсеместным стандартом стали цветовые профили, создаваемые в соответствии с требованиями ICC. Основное содержание такого профиля составляют таблицы (матрицы) соответствия цветов при различных преобразованиях.

Самый заурядный профиль монитора должен содержать как минимум матрицы для преобразования CIE – RGB и таблицу для обратного преобразования, параметры белого цвета и градационную характеристику (параметр Gamma).

Главная особенность ICC-профиля печатающего устройства - необходимость учета взаимовлияния цветов. Если на мониторе точки люминофора излучают практически независимо, то при печати краски накладываются на бумагу и друг на друга. Поэтому профили печатающих устройств содержат огромные матрицы для пересчета взаимных преобразований пространств XYZ и Lab, математические модели различных вариантов таких преобразований.

 

 5. Форматы графических файлов

 Знания о форматах записи электронных изображений необходимы при их сохранении, передаче, оптимизации использования в различных проектах и программах. Формат отражает функциональные предназначения графических изображений, а также различные способы сжатия графической информации. При выборе формата записи изображения следует обращать особое внимание на совместимость данного формата с  разными программами, плотность записи, качество визуализации.

Например, начиная работу над новой web-страницей, приходится прежде всего решать, какие графические элементы будут на ней использоваться и откуда эти элементы можно получить. Многие из них, например кнопки или маркеры списков, можно нарисовать самостоятельно, используя графический редактор. В некоторых случаях можно обходиться вообще без графики, воспользовавшись, например, таблицами с цветным фоном и различными начертаниями шрифтов. Но если есть желание использовать фотографии или другую сложную графику, то приходится потратить некоторое время на поиск файлов с подходящими изображениями, сканирование фотографий или на съемку цифровой камерой. Независимо от того, каким из этих методов приходится пользоваться, рано или поздно будет необходимо сохранить промежуточные результаты обработки или найденные изображения.  На web-страницах применяется в основном растровая графика, но векторные редакторы широко применяются на предварительных этапах подготовки изображений. Они особенно полезны при разработке или корректировке логотипов и других элементов, требующих четкой прорисовки. Так что на различных этапах подготовки изображений приходится преобразовывать графические файлы из одного формата в другой. Файлы растровых изображений могут иметь большой объем.

В полиграфии и других областях, где нет необходимости постоянного переноса изображений с одного компьютера на другой, это не имеет большого значения. В web-дизайне все по-другому. Здесь главное — добиться высокой скорости передачи данных, а файлы большого размера этому вовсе не способствуют. Поэтому для графического оформления сайтов используют форматы, использующие сжатие изображений, которое позволяет уменьшить объем передаваемой информации. Изображения для web-страниц в большинстве случаев сжимаются за счет потери некоторой части информации. Это приводит к различным искажениям, снижающим общее качество изображения.  При подготовке высококачественной графики те или иные виды искажений недопустимы. Если исходное изображение уже содержит те или иные аномалии, то получить качественную картинку при дальнейшем сжатии будет практически невозможно. По этой причине на промежуточных этапах чаще всего используются форматы, не вносящие искажения, а значит, практически не допускающие сжатия без применения внешних архивирующих программ.   В настоящее время существует достаточное количество форматов для записи электронных изображений.

Форматы, хранящие изображение в растровом виде.

Форматы векторной графики

Форматы, совмещающие оба основных вида графики (растровую и векторную)

PSD, GIF,  JPG, TIFF, BMP, PCX

WMF

CDR, AI, XAR, EPS

Остановимся подробнее на некоторых форматах. 

  Формат PSD.  Так как графический пакет Adobe PhotoShop является одним из наиболее распространенных средств подготовки web-графики, его внутренний графический формат (PSD) также получил широкое распространение.  Следует отметить, что этот формат наиболее широко применяется для хранения промежуточных результатов работы над оформлением сайта. Для хранения исходных изображений обычно используются другие форматы.  Формат PSD развивается одновременно с программой PhotoShop, что необходимо для хранения элементов, которые вводятся в новых версиях программы. При этом сохраняется полная обратная совместимость форматов. То есть файл, сохраненный, например, в PhotoShop 5.0, может быть открыт в PhotoShop 7.0 без потери каких-либо элементов изображения или его качества. Следует учитывать, что обратная совместимость форматов не поддерживается. Это значит, что некоторые элементы файла не смогут быть прочитанными в более ранних версиях программы.  Основа использующегося в настоящее время формата PSD была введена в PhotoShop 3.0. Именно в этой версии введены слои, позволяющие более гибко работать с изображениями и хранить их элементы отдельно друг от друга. В предыдущих версиях формата PSD слои отсутствовали, поэтому они рассматриваются как самостоятельные форматы хранения изображений.  Для уменьшения объема, занимаемого РSD-файлом на диске, в этом формате используется алгоритм сжатия RLE (Run-Length Encoding — кодирование серий). Этот алгоритм обеспечивает сравнительно невысокую степень сжатия, но позволяет повысить скорость обработки данных, кроме того, сжатие производится без потерь информации. PSD-файлы занимают меньше места на диске, чем, скажем, несжатые файлы в формате TIFF. Файлы PSD можно дополнительно сжать при помощи программы-архиватора. Это позволяет уменьшить объем файла еще приблизительно ( в зависимости от его содержимого) в два раза. 

 Формат TIFF (Tagged Image File Format – формат файлов изображений, снабженных тегами). Является одним из наиболее широко распространенных форматов, используемых при подготовке графики. Этот формат является фактически стандартом для подготовки изображений в полиграфии. Файлы этого формата обычно имеют расширение TIF или TIFF.  TIFF - один из наиболее сложных по своей внутренней структуре форматов. Файлы TIFF начинаются с заголовка файла изображения (IFH — Image File Header), имеющего длину 8 байтов. Заголовок файла содержит блок, называемый каталогом файла изображения (IFD — Image File, Directory). Этот блок позволяет графическим программам определить внутреннюю структуру файла.  При помощи IFD из файла можно выделить теги — блоки данных, содержащие информацию о размерах изображения, его цветовой модели, размере палитры (числе используемых цветов), сжатии данных и т. д. Само изображение также содержится в отдельном теге. Всего определено несколько десятков таких блоков. Так как весь TIFF файл состоит из тегов, этот формат легко поддается модернизации и расширению. В самом деле, для введения дополнительных возможностей достаточно определить новый тег. Однако в этом кроется и источник возможных ошибок — если программа не сможет определить значение тега, введенного кем-либо из производителей аналогичного программного обеспечения, файл может быть открыт неправильно или его вовсе не удастся прочитать. 

В файле формата TIFF изображение может храниться в цветовых моделях CMYK, RGB и др. Это позволяет использовать формат для хранения самых разных изображений, применяемых как для подготовки web-графики, так и в полиграфии. Кроме цветовой модели, сохраняется и разрешение, с которым следует выводить изображение на печать. Задав высокое разрешение, можно получить качественные распечатки, если, конечно, принтер поддерживает печать с заданными параметрами.  Максимальное число битов, которыми описывается один пиксел изображения в формате TIFF, составляет 24. Это позволяет закодировать до 16 777 216 цветов. 

 Кроме изображения, в TIFF-файле могут сохраняться каналы прозрачности (alphaканалы), позволяющие сохранять прозрачные области изображения или выделения объектов между сеансами работы. Если вы работаете в PhotoShop, то вы можете сохранить в формате TIFF файл, содержащий слои, но другие программы смогут прочесть такой файл только как единое изображение. Для указания на необходимость сохранения слоев установите флажок Layers (Слои) в диалоге выбора имени сохраняемого файла (этот флажок доступен только при сохранении в расширенном варианте стандарта — Enhanced TIFF (Расширенный TIFF)). 

Важное свойство формата TIFF — использование сжатия данных. Такое сжатие не является обязательным и может быть включено или выключено пользователем. В большинстве случаев используется алгоритм сжатия LZW (метод Лемпела-Зива-Уолша, сжатие без потерь информации), но может применяться и сжатие с потерями (например алгоритм JPEG). Сжатие данных позволяет существенно снизить размер файла. Особенно сильно это проявляется на изображениях, содержащих большие однотонные пространства, например, на отсканированных текстах и схемах. Однако сжатие данных можно применять далеко не всегда. Дело в том, что алгоритм LZW защищен патентом, и фирмы-разработчики вынуждены оплачивать его использование в своих программах. Поэтому далеко не все программы могут сохранять файлы со сжатием и правильно читать их. Если вы отправляете кому-либо файлы в формате TIFF, то лучше воспользуйтесь какой-либо программой-архиватором (например, WinRAR или WinZip). Это уменьшит вероятность того, что ваши файлы не смогут быть открыты получателем. 

 Формат JPEG (Joint Photographic Experts Group - объединенная экспертная группа по фотографии, произносится "джейпег"). При разработке графического оформления web-сайта часто приходится пользоваться готовыми изображениями, например, фотографиями. В большинстве случаев такие изображения доступны в формате JPEG. Этот формат позволяет хранить цветные изображения с глубиной до 24 битов (16 777 216 цветов), а также изображения в оттенках серого. Основная особенность формата JPEG — высокая степень сжатия данных, достигаемая за счет сжатия с потерями. То есть часть данных во время сжатия отбрасывается. Это приводит к снижению качества картинки (теряются мелкие детали, появляются разводы и муар), но позволяет достичь хорошего сжатия изображения. Разумеется, такой подход неприменим к чертежам, схемам и другим видам графики, требующим передачи четких линий и надписей. Но для фотоизображений, особенно имеющих большие размеры, подобные алгоритмы сжатия вполне подходят.  При работе над оформлением сайтов (да впрочем, и в любой другой области) использовать JPEG следует только для сохранения конечных результатов. Если вы, не закончив работу над изображением, сохраните его в этом формате, качество может значительно ухудшиться. Разумеется, это скажется и на конечном результате. 

 Формат WMF (Windows Meta File). Применяется в Windows для описания, в основном, векторной информации. Векторный формат WMF применяется в Windows для хранения векторных изображений. Например в этот формат конвертируются векторные изображения при переносе через буфер обмена Clipboard, поэтому для редактирования данного формата никакого специального приложения не существует. Понимается практически всеми программами Windows, так или иначе связанными с векторной графикой. Однако, несмотря на кажущуюся простоту и универсальность, пользоваться форматом WMF стоит только в крайних случаях. WMF искажает цвет, не может сохранять ряд параметров, которые могут быть присвоены объектам в различных векторных редакторах, не может содержать растровые объекты, не понимается очень многими программами на Macintosh.

 Формат CDR. Формат CDR используется программой Corel Draw. Формат позволяет записывать векторную и растровую графику, текст. Файл в формате CDR может иметь несколько страниц. Формат может использоваться как промежуточный. Поддерживается меньшим количеством программ, чем AI.  Формат имеет неоспоримое лидерство на платформе РС. Многие программы (Illustrator, PageMaker - среди них) могут импортировать файлы Corel Draw. В файлах формата CDR применяется компрессия для векторов и растра отдельно, могут внедряться шрифты, имеется огромное рабочее поле 45х45 метров (этот параметр важен для вывода плакатов, вывесок, наружной рекламы).

 Формат AI. AI - это  формат векторного редактора Adobe Illustrator. Позволяет сохранять всю информацию, создаваемую в этой программе. Его можно импортировать практически в любой графический редактор, а также во многие растровые, например Adobe Photoshop. При открытии в растровом редакторе документ растеризуется. Файлы AI организованы следующим образом: вначале записана строка идентификатора, за ней следует заголовок, затем остальная часть файла, в которой определяются графические объекты. В терминологии фирмы Adobe заголовок называется "Прологом" (Prolog) и состоит из структурирующих и простых комментариев. За заголовком следует раздел "Настройки сценария" (Script Setup); он содержит команды, определяющие объекты, из которых состоит изображение. Затем идут разделы "Дополнение страницы" (Page Trailer) и "Дополнение документа" (Document Trailer). Завершаются файлы структурирующим комментарием, который сообщает программе или устройству визуализации о том, что данные, относящиеся к визуализируемому изображению, закончились. 

 

Контрольные вопросы для самопроверки:

  1. Расскажите понятиях «Компьютерная графика», «компьютерная анимация», «интерактивная компьютерная графика».
  2. Расскажите про классификацию компьютерной графики.
  3. Что такое разрешение изображения?
  4. Расскажите об основных цветовых моделях.
  5. Что такое цветовой профиль?
  6. В чем заключается процесс сжатия изображения?
  7. Расскажите об основных форматах графических файлов.

 

Список литературы:

  1. Основы компьютерной графики. [Электронный ресурс]. Режим доступа:  https://docplayer.ru/25926271-Lekciya-9-osnovy-kompyuternoy-grafiki.html
  2.  Основы компьютерной графики. [Электронный ресурс]. Режим доступа:  http://textarchive.ru/c-2872038-pall.html

 

 

 

Вы прошли 100% лекции
100%